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Abstract
In a networked system, the communication system is indispensable but often the weakest link
w.r.t. performance and reliability. This, particularly, holds for wireless communication sys-
tems, where the error- and interference-prone medium and the character of network topolo-
gies implicate special challenges. However, there are many scenarios of wireless networks, in
which a certain quality-of-service has to be provided despite these conditions. In this regard,
distributed real-time systems, whose realization by wireless multi-hop networks becomes in-
creasingly popular, are a particular challenge. For such systems, it is of crucial importance that
communication protocols are deterministic and come with the required amount of efficiency
and predictability, while additionally considering scarce hardware resources that are a major
limiting factor of wireless sensor nodes. This, in turn, does not only place demands on the
behavior of a protocol but also on its implementation, which has to comply with timing and
resource constraints.

The first part of this thesis presents a deterministic protocol for wireless multi-hop networks
with time-critical behavior. The protocol is referred to as Arbitrating and Cooperative Trans-
fer Protocol (ACTP), and is an instance of a binary countdown protocol. It enables the reli-
able transfer of bit sequences of adjustable length and deterministically resolves contest among
nodes based on a flexible priority assignment, with constant delays, and within configurable ar-
bitration radii. The protocol’s key requirement is the collision-resistant encoding of bits, which
is achieved by the incorporation of black bursts. Besides revisiting black bursts and propos-
ing measures to optimize their detection, robustness, and implementation on wireless sensor
nodes, the first part of this thesis presents the mode of operation and time behavior of ACTP.
In addition, possible applications of ACTP are illustrated, presenting solutions to well-known
problems of distributed systems like leader election and data dissemination. Furthermore, re-
sults of experimental evaluations with customary wireless transceivers are outlined to provide
evidence of the protocol’s implementability and benefits.

In the second part of this thesis, the focus is shifted from concrete deterministic protocols
to their model-driven development with the Specification and Description Language (SDL).
Though SDL is well-established in the domain of telecommunication and distributed systems,
the predictability of its implementations is often insufficient as previous projects have shown.
To increase this predictability and to improve SDL’s applicability to time-critical systems, real-
time tasks, an approved concept in the design of real-time systems, are transferred to SDL and
extended to cover node-spanning system tasks. In this regard, a priority-based execution and
suspension model is introduced in SDL, which enables task-specific priority assignments in the
SDL specification that are orthogonal to the static structure of SDL systems and control transi-
tion execution orders on design as well as on implementation level. Both the formal incorpo-
ration of real-time tasks into SDL and their implementation in a novel scheduling strategy are
discussed in this context. By means of evaluations on wireless sensor nodes, evidence is pro-
vided that these extensions reduce worst-case execution times substantially, and improve the
predictability of SDL implementations and the language’s applicability to real-time systems.
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1. CHAPTER

Introduction
In a networked system, the communication system is an integral and indispensable part and
has often to provide a required degree of Quality-of-Service (QoS). In this regard, distributed
real-time systems represent a particularly challenging application domain due to their stringent
demands on the communication system in terms of deterministic protocols and implementa-
tions with predictable execution times. In wired networks, real-time-capable communication
has a long tradition and many successful examples can be found, in particular, in the auto-
motive domain, where communication technologies like the Controller Area Network (CAN)
[Int04] and FlexRay [Fle10] have become established standards.

However, in wireless networks in general and Wireless Sensor Networks (WSNs) in particu-
lar, there are far less examples and, although there exist several communication standards with
QoS support by now – like WirelessHART [Int10] and ISA 100.11a [Int12a] -, their capabilities
and diversity are still considerably smaller compared to wired solutions. While these standards
are primarily based on combinations of Time Division Multiple Access (TDMA), Frequency Di-
vision Multiple Access (FDMA), and Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA), very little attention is paid to binary countdown protocols, which build a sepa-
rate class of deterministic MAC (Medium Access Control) protocols and provide predictable
value-based medium arbitration with bounded delays. In wired networks, the most famous
representative of this protocol class is CAN [Int04]. In wireless networks, there is, however,
no established standard, yet some variants can be found in research papers (e.g., in [PAT07]).
The first part of this thesis proposes a novel binary countdown protocol for wireless multi-hop
networks with fewer limitations than existing solutions. It is denoted by Arbitrating and Coop-
erative Transfer Protocol (ACTP) and incorporates black bursts as communication primitive.

To run deterministic protocols like ACTP, their implementations have to comply with strict
timing constraints. However, this demand is often contrary to the trend towards more complex
protocol stacks and software systems, in which several system tasks compete for the scarce
hardware resources. A common approach to deal with the increasing complexity of software
systems is the application of model-driven development processes, which enable abstraction
and improve reusability and productivity. For distributed systems and protocols, a well-known
language with support of model-driven development processes is the Specification and De-
scription Language (SDL) [Int12c]. However, as it turned out, SDL implementations suffer from
low efficiency and predictability, thereby impeding the utilization of the language for protocols
with time-critical behavior and real-time systems, where timeliness is a basic requirement for
correctness. To improve SDL’s applicability to such systems and to increase the predictability
of SDL implementations, the second part of this thesis presents several language extensions
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for SDL. They are summarized under the name SDL real-time tasks and transfer an approved
concept from the design of real-time systems to SDL [Kop97].

Altogether, this thesis consists of ten main chapters, which are structured into the two parts
as follows:

• Part I introduces ACTP as a new representative of a deterministic binary countdown
protocol for wireless multi-hop networks. This part consists of five chapters and presents
the protocol’s basics, mode of operation, applications, and evaluation.

• Part II proposes SDL extensions to improve the expressiveness of the language and the
predictability of its implementations. It also consists of five chapters, describing the ex-
tensions and their implementation and evaluation, and is supplemented by Appendices B
and C, where the extensions are formally defined.

Appendix A is related to both parts and outlines the Imote 2 platform, which has been used as
representative of a wireless sensor node to evaluate both ACTP and the SDL extensions. A gen-
eral conclusion and a discussion of open topics and future work is provided in Chapter 12. In
all chapters in which results of own work are presented, references where these results or parts
of them have been published are provided at the beginning of the chapter. These references
are numeric and refer to the list of publications on pages 245–247, whereas other references are
alphanumeric and can be found in the bibliography starting on page 225.



PART I

ACTP: A DETERMINISTIC BINARY COUNTDOWN
PROTOCOL FOR WIRELESS NETWORKS

Though WSNs are no “brand-new” topic and several related standards have evolved over the
last two decades, their dissemination is not yet complete. Due to their advantages w.r.t. flex-
ibility, wiring cost, and scalability, they, particularly, more and more replace wired networks.
However, there are also scenarios, in which wireless networks cannot provide a suitable solu-
tion but wired technologies are still preferred. Reasons for this are diverse: On the one hand,
they have their origin in the wireless medium itself, which is hard to control and makes wireless
networks in the first instance less predictable and reliable than wired solutions. Thereby, wire-
less networks cannot be deployed in scenarios, where unreliable communication may lead to
personal injuries or material damage. On the other hand, the applicability of wireless networks
is restricted by technical limitations, since wireless technologies usually provide lower perfor-
mance; e.g., in terms of transmission rates. Medium arbitration falls into the same category and
is significantly different in wireless networks than in wired networks. This difference mainly
stems from the missing capabilities of wireless transceivers to detect collisions on the medium
while sending, which is, on the contrary, available with wired mediums and utilized by several
popular communication standards like IEEE 802.3 Ethernet [Ins12b] and CAN [Int04].

Compared to wired networks, a frequently mentioned drawback of wireless networks and,
in particular, WSNs are limited energy resources that is aggravated by battery-powered nodes.
Motivated by this issue, many duty cycling protocols have been devised for WSNs, which iden-
tify wireless transceivers as one of the major sources of energy waste and limit their energy
demands by coordinated active/inactive cycles. Referring to this, S-MAC [YHE02, YHE04] is
probably the most often cited representative, yet there are also enhancements that are more ef-
ficient w.r.t. energy consumption, QoS, and multi-hop support (e.g., T-MAC [vDL03] or RMAC
[DSJ07]). Though the range of duty cycling protocols is very wide and protocols differ in syn-
chronization, type of coordination, and medium access, they all have in common that they
emphasize the importance of energy reduction, which must not be neglected in the design of
any WSN protocol.

Because wireless nodes are becoming cheaper and smaller, topologies of wireless networks –
and, in particular, WSNs – tend to become more and more complex regarding density, diameter,
and node mobility. Thus, they define a new type of ad-hoc networks with (mostly) short links,
many nodes, high partial dynamic, and large spatial expansion. However, these properties are
contradictory to increasing communication requirements, which are demanded by many new
application scenarios from the domain of distributed real-time systems and networked control
systems. Thus, protocols for wireless networks and WSNs must not only consider energy as
a major concern, but have also to offer QoS. In this regard, deterministic guarantees are a spe-
cial challenge due to the demanding characteristics of wireless topologies, the hidden station
problem [Kar90], and hardware limitations of wireless (sensor) nodes.
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Most protocols of WSNs and wireless networks in general cannot provide such a high de-
gree of guarantees and are therefore inapplicable if upper bounds on delays or a particular
transfer rate must be met. This, particularly, holds for CSMA/CA-based protocols, which are
very common for general purpose applications and, for instance, available in IEEE 802.11 DCF
(Distributed Coordination Function) [Ins12a] and contention access periods of IEEE 802.15.4
[Ins11]. Since they suffer from collisions, their end-to-end delays are hardly predictable and
without upper bounds. Furthermore, they are not optimal w.r.t. energy efficiency because of
costly arbitrations and energy waste due to collisions [YHE02].

Due to these shortcomings, many existing standards additionally provide reservation-based
medium access with time slots. Such TDMA-based protocols1 can, for instance, be found
in IEEE 802.11 PCF2 (Point Coordination Function) [Ins12a], contention free periods of IEEE
802.15.4 [Ins11], and standards from the domain of process automation like WirelessHART
[Int10] and ISA 100.11a [Int12a]. As big advantage over CSMA/CA, collisions are avoided en-
tirely with TDMA and upper bounds on end-to-end delays are possible. A downside is that
coordination overhead is much higher and that transmission schedules are hard to determine
if communication demands are unknown or sporadic. This, in general, leads to overbooking of
transmission slots and a waste of network resources.

In this part of the thesis, another class of medium access schemes is discussed that is based
on the deterministic elimination of contest and collision resistance, and closes the gap between
CSMA/CA’s “flexible but unreliable“ and TDMA’s “reliable but inflexible“ mode of operation.
Though protocols of this class are neither all-purpose solutions nor replacements of established
medium access schemes – TDMA is, for instance, still best suited to process strictly periodic
traffic –, they provide attractive solutions to recurring problems of distributed systems like
leader election. In the course of this discussion, a new instance of this protocol class is intro-
duced, which is called ACTP and enables deterministic multi-hop arbitrations with bounded
delays. ACTP is located at MAC layer and a so-called binary countdown protocol, whose most
popular representative is the wired CAN bus [Int04]. Though it is not the first wireless binary
countdown protocol, ACTP outperforms previous solutions w.r.t. flexibility and multi-hop sup-
port. Thereby, it opens the door to new application scenarios like deterministic and network-
wide leader election and value propagation with bounded delays. One of the key foundations
of ACTP to guarantee its deterministic mode of operation is the collision-resistant encoding of
bits. For this purpose, so-called black bursts [Kuh09, KdI07] are utilized that are incorporated
into ACTP together with newly devised optimizations.

Though ACTP is not limited to WSNs but addresses wireless multi-hop networks in general,
we consider WSNs as one of the main application domains of ACTP and examine the protocol’s
implementability w.r.t. performance and energy limitations of wireless sensor nodes.

1Some TDMA-based protocols additionally incorporate FDMA, whose pros and cons regarding flexibility and
QoS are similar to TDMA.

2Though PCF is specified in the IEEE 802.11 standard, its implementation is optional and hardly widespread.
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Contributions

Before devising a binary countdown protocol, a certain fundament has to be created, which has
to provide collision-resistant bit encoding and an answer to synchronization demands. In this
part of the thesis, this fundament is outlined before ACTP, possible application scenarios, and
experimental evaluations are presented. In detail, the following contributions are made:

• Though black bursts are no novel concept, they are revisited in this part of the thesis.
Based on their original definition, a generalization is presented, prerequisites are dis-
cussed, and details on their realization are outlined. In this regard, a special focus is on
IEEE 802.15.4-based [Ins11] transceivers and their impact on the detection of black bursts,
which is formally considered.

• Optimization measures are proposed to improve the collision resistance of black bursts
and the accuracy of black burst detection. For this purpose, the focus is on implementa-
tions with TI’s CC 2420 transceiver [Tex07], which is a common transceiver in WSNs and
also used in the second part of this thesis.

• A new deterministic binary countdown protocol for wireless networks is proposed. The
protocol is called ACTP, is decentralized, and provides value-based medium arbitration
with constant delays. Different from existing binary countdown protocols, it provides
configuration options w.r.t. size of priorities and range of application.

• Timings of ACTP are derived formally and as function of configuration parameters and
transceiver-depending properties. Thereby, the protocol’s constant runtime can be calcu-
lated for each scenario in advance.

• Different operation modes of ACTP are introduced, which differ in application range
and purpose. When running ACTP network-wide, it is shown that several beneficial
information like the priorities of winners become public knowledge of the network. By
presenting ACTP’s cooperative mode, it is furthermore shown that binary countdown
protocols are no pure arbitration protocols but can also be applied to the reliable and
collision-protected propagation of data. Finally, advantages and limitations of running
ACTP with restricted application ranges are examined.

• Threats of black bursts as well as ACTP are analyzed in terms of false positives and false
negatives. Furthermore, possible countermeasures are presented.

• A set of sample applications is presented, showing the heterogeneity of possible scenarios
with ACTP-based solutions. While there is no claim for completeness, examples include
both general problems of wireless networks as well as applications in control systems and
in projects with industrial partners.

• An excerpt of an SDL specification of ACTP is presented, which defines the protocol’s
behavior in a formal way and enables simulative evaluations of ACTP in large networks.

• Two implementation variants of ACTP are outlined, which are both developed for Imote 2
sensor platforms [MEMara]. They reflect different stages of development and differ in
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possible application contexts: One targets stand-alone evaluations; the other supports
the protocol’s utilization in a comprehensive protocol framework.

• In series of experimental evaluations, the feasibility of black bursts is demonstrated both
in indoor environments with external sources of interference and in an outdoor envi-
ronment. Furthermore, a proof-of-concept is provided for ACTP, thereby validating the
protocol’s implementation and formally derived timings.

• A survey of related work points out the differences between existing value-based arbi-
tration protocols and ACTP. In this regard, so-called busy tone protocols and previous
binary countdown protocols are considered.

Outline

This first part of the thesis is structured as follows:

• Chapter 2 presents black bursts as foundation of ACTP. It is a mix of a survey of black
bursts in previous works and of a deeper discussion on influencing factors and optimiza-
tion possibilities. In this regard, a definition of black bursts, prerequisites, realization
alternatives, and improvements are considered.

• Chapter 3 proposes ACTP. For this purpose, the general principle of binary countdown
protocols is examined. Afterwards, ACTP’s terminology and mode of operation is for-
mally introduced by means of a state machine. This chapter furthermore derives timings
of the protocol formally and as function of configuration parameters and transceiver-
depending properties. Thereafter, ACTP’s network-wide application and its restricted
and cooperative operation modes are discussed. A further topic is the impact of com-
munication errors and possible countermeasures. Finally, an SDL specification and hand-
written implementations of ACTP are sketched.

• Chapter 4 presents applications of ACTP, including solutions to popular problems of dis-
tributed systems like leader election as well as specialized problems of control systems
like Try-Once-Discard. In the course of these example applications, the integration of a
synchronization protocol and compliance between ACTP and duty cycling is discussed.

• Chapter 5 shows results of experimental evaluations demonstrating ACTP’s feasibility.
In this regard, the focus is in most instances on black bursts, whose reliability is the most
crucial aspect of ACTP’s deterministic behavior. The experiments have been conducted
partially indoor in office environments and partially outdoor to assess the reliability of
black bursts and ACTP with and without external sources of interference.

• Chapter 6 surveys related work and relates them to ACTP. Besides other wireless bi-
nary countdown protocol, the presentation of related work includes busy tone protocols,
whose mode of operation is different from binary countdown protocols but can also pro-
vide deterministic and value-based arbitration under certain circumstances.



2. CHAPTER

Black Bursts: A Communication Primitive for
Deterministic Protocols

In wireless systems, the aim is usually to totally prevent simultaneous frame transmissions in
the same collision domain, since overlapping transmissions can lead to destructive collisions.
With regular frames, this fear is well-founded. A general approach to achieve this aim and
to guarantee correct frame transmissions is the application of TDMA-based medium access
protocols with reserved transmission slots, thereby serializing transmissions of all nodes in the
same collision domain. However, TDMA is not always the best or most efficient solution, if,
for instance, a value-based transmission order is desired or if transmissions happen rarely and
sporadically.

In this chapter, a collision-resistant communication primitive called black burst is introduced,
which builds the basis for various protocols with deterministic Quality-of-Service (QoS). Black
bursts are no novel approach but have been proposed in several previous works (e.g., in [SK96,
SK99, Kuh09]; see also Chapter 6 for a survey of related work). Their first mentioning goes
back to 1996 [SK96], yet with a slightly different definition than in this thesis. In this chapter,
black bursts are recapitulated and novel optimizations w.r.t. their realization are presented.

Though black bursts achieve significantly slower transmission rates than regular frame trans-
missions, they distinguish themselves by enabling the simultaneous and collision-protected
transmission of small pieces of information. Thereby, they pave the way for various determin-
istic protocols like the Arbitrating and Cooperative Transfer Protocol (ACTP), which is intro-
duced in Chapter 3 and applied to sample applications in Chapter 4. To begin with, this chapter
provides a summary of black bursts (Sect. 2.2), their realization (Sect. 2.3), and measures to im-
prove their robustness and detection accuracy (Sect. 2.4). It is completed by a motivation of
black bursts in Sect. 2.1 and a discussion in Sect. 2.5.

The contents presented in this chapter have been published in [8], [10], [11], [12], [16].

2.1 Motivation

Simultaneous transmissions and destructive collisions state a crucial problem in wireless sys-
tems, since they can degrade the system’s performance and violate its correct behavior. This
section illustrates some problems of wireless networks, which occur with regular frame trans-
missions, in order to motivate the advantages of a collision-protected communication primitive.
For this purpose, the section first outlines a common wireless network model and discusses
limitations of protocols and transceivers afterwards.
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2.1.1 A Common Network Model for Wireless Systems

A common network model of wireless systems [SK99] classifies links either as communication,
interference, or sensing links (see Fig. 2.1). While a communication link (Va to Vb) enables regu-
lar data transfer, interference and sensing links are too weak to deliver data frames correctly.
Frames sent via an interference link (Va to Vc), which overlap with another frame at a receiver,
are, however, strong enough to collide in a destructive way and to avoid the correct recep-
tion of the second frame. Sensing links (Va to Vd), on the other hand, cannot cause destructive
collisions but enable nodes to observe a medium occupancy. Usually, it is assumed that a com-
munication link is always an interference link but not vice versa. Similarly, an interference link
is always a sensing link.

communication link

Vd

interference link

sensing
link

Va
Vb

Vc

Figure 2.1: Network model with communication, interference, and sensing links [SK99].

Many protocols assume that links are symmetric.1 This assumption is, in particular, made for
communication links, e.g., to enable handshakes or acknowledgments. Yet in reality, symmetry
is not necessarily given as shown by empirical studies [KNE03, KNG+04, GKW+02]. The type
of link between two nodes can usually not be determined on the basis of the nodes’ spatial dis-
tance, since signal strengths depend on the environment and objects in the propagation path,
which attenuate, reflect, diffract, and scatter the signal. On the one hand, this may prevent
communication despite a short distance. On the other hand, situations can exist, where com-
munication is possible over very large distances [GKW+02]. Such situations can, for instance,
be found in corridors, which provoke constructive scattering and reflection [VVL+11].

The network model states an explicit simplification and, in particular, interference is much
more complicated to capture. In reality, it does not only depend on two nodes whether a trans-
mission by one node causes a destructive collision at the other node. Instead, signal strength
difference, temporal offset, and carrier phase offset between all colliding frames decide on the
kind of collision, and whether and which frames can still be received correctly [KSM08, WLS14].

2.1.2 Limitations of Wireless Transceivers and State-of-the-Practice Protocols

Different from wired systems, transceivers of wireless systems are usually half-duplex and
require switchings between transmission and reception mode. Thus, collision detection, which
is, for instance, applied by IEEE 802.3 Ethernet [Ins12b], is not possible in wireless systems.
Instead, many communication protocols for wireless systems are based on CSMA/CA, i.e.,
they apply medium access methods with preventive avoidance of collision. With such methods,
each station with data to send listens to the medium before transmitting and starts sending only

1In the model used by Sobrinho and Krishnakmuar [SK99] and shown in Fig. 2.1, communication links are
directed but always bidirectional, whereas interference and sensing links are undirected.
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if the medium is idle. Otherwise, the transmission is deferred until the medium is observed
idle again and a random backoff time has been waited. CSMA/CA is, for instance, adopted in
IEEE 802.11 [Ins12a], in IEEE 802.15.4’s non-beacon mode, and in the contention access period
of IEEE 802.15.4’s beacon-enabled mode [Ins11]. Since CSMA/CA is a probabilistic approach,
it cannot guarantee the absence of destructive collisions and frame loss.

One reason of collisions is the so-called hidden station problem, which exists if two nodes share
a common neighbor w.r.t. communication links but are not connected by a sensing link. In this
situation, CSMA/CA does not work, since a node cannot detect transmissions of the hidden
station. To solve this problem, a frequently referenced solution are Request-To-Send / Clear-To-
Send (RTS/CTS) handshakes before transmissions [Kar90]. An RTS/CTS handshake informs
all neighbors of the sender (via RTS frame) and the receiver (via CTS frame) about the upcoming
data transmission and is, for instance, adopted in IEEE 802.11 [Ins12a]. However, in a hidden
station situation, RTS/CTS handshakes require a communication link between the receiver and
the hidden station to receive the CTS frame, which is not given if they are connected by an in-
terference link only. Many protocols entirely ignore the hidden station problem. Instead, they
assume that there are no hidden stations in the network, which is true if the sum of commu-
nication and interference range is always smaller than the sensing range [BPC+07]. Another
problem that is often mentioned in association with hidden stations is the problem of exposed
stations. This problem occurs if two stations are in sensing range of each other and one of these
stations defers its transmission due to an ongoing transmission of the other node. If transmis-
sions are destined to different receivers that are not in interference range of the respective other
sender, the transmission would not cause a destructive collision and is detained unnecessarily.
Because the exposed station problem degrades performance but does not provoke collisions, it
is less critical than the hidden station problem.

A further reason of collisions are the limitations of wireless transceivers. Among others,
these include switching delays, which imply a blind period when changing between transmit
and receive mode. Another limitation, which is particularly critical w.r.t. black bursts as dis-
cussed in Sect. 2.3.2, is the delay to perform Clear Channel Assessment (CCA) – i.e., the time
that is required to detect the current medium state. CCA is a prerequisite for all CSMA/CA-
based protocols but is sometimes also performed by TDMA-based protocols – like the stan-
dards ISA 100.11a [Int12a] and WirelessHART [Int10] – to detect interfering networks [PC11].
Switching and CCA delays are usually very high with current WSN transceivers and increase
collision probabilities in such networks even without hidden stations [KSM08].

Compared to medium access with reserved time slots, which is realized by Guaranteed
Time Slots (GTS) in IEEE 802.15.4 [Ins11], WirelessHART [Int10], and ISA 100.11a [Int12a],
CSMA/CA-based protocols cannot provide guarantees regarding delays or reliability of com-
munication. Nevertheless, CSMA/CA has other advantages like less coordination overhead
and no necessity for synchronization. Furthermore, TDMA-based protocols have, in general,
higher (but bounded) average delays and tend to under-utilize the medium if the concrete traf-
fic volume is not known a priori. In addition, medium schedules with TDMA are usually fixed
or costly to change and do not support value-based arbitration. With CSMA/CA-based pro-
tocols, value-dependent arbitrations can be achieved by varying backoff intervals, yet such a
solution cannot properly deal with multi-hop networks and hidden stations, and suffers from
the lack of synchronization.
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2.2 An Introduction to Black Bursts

In this section, black bursts are introduced as a communication primitive that builds the foun-
dation for a deterministic value-based arbitration protocol (see Chapter 3). The introduction of
black bursts is similar to their definition in [KdI07, Kuh09]. The first mentioning of the term was
earlier but with a different definition [SK96]. In addition, this section discusses prerequisites of
black bursts, which must hold for their reliable utilization.

2.2.1 Definition

Different from a regular MAC frame, a black burst does not contain modulated payload but
is only a period of energy of pre-defined length. Though a black burst has no payload in the
usual sense, it carries two important pieces of information: The duration of the caused medium
occupancy and the point in time when the medium occupancy starts. Since both information
remain available if several black bursts of the same length are transmitted (almost) simultane-
ously, black bursts enable a collision-resistant communication primitive for wireless networks.
Usually, one black burst encodes exactly one bit, where a black burst with a duration of dbb > 0
represents a binary 1 (dominant bit; called “long 1” in [Kuh09]). Contrariwise, “no transmis-
sion” realizes a binary 0 (recessive bit; called “long 0” in [Kuh09]). Since a station sending a
recessive bit does not switch its transceiver to transmission mode, it can detect dominant bits
of neighbored stations by observing the state of the channel.

Va (001)

Vb (101)

Vc

guard times

Va

Vb

Vc

transmitted
bit sequence

1 0 1

detected bit

transmission

detection

t

t

t

dbb

Figure 2.2: Overlapping black burst sequences with two senders (Va and Vb).

Figure 2.2 illustrates the application of black bursts in a single-hop network with three sta-
tions. Note that the nodes are connected by sensing links only, since communication or interfer-
ence links are not necessary for the transport of black bursts. In the example, bit sequences of
length 3 are transmitted, where each bit duration consists of the time to transmit a dominant bit
dbb and additional guard times, which are necessary to clearly separate the bit times and to take
transceiver characteristics like switching delays into account. Bit sequences are transmitted by
two nodes (Va and Vb) synchronously and encoded by black bursts. A third node (Vc) acts as
receiver. Since Va’s bit sequence is 0012, it actually performs only one black burst transmission
during the last bit time. Station Vb sends two dominant bits and stays in receive mode for one
bit time. Station Vc does not send any black burst but observes the medium the entire time.
Thereby, it is able to decode medium occupancies as dominant bits and to detect recessive bits
by the absence of medium occupancy. The bit sequence that is observed by Vc is the bit-wise
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Figure 2.3: Realization of 4-ary symbols with black bursts of several length.

OR operation on both sent sequences. Since stations sending recessive bits are in receive mode,
also senders are aware of this bit sequence. Similar to calculating the bit-wise OR, a bit-wise
AND can be achieved by realizing a binary 0 dominantly by a black burst transmission and a
1 recessively by no transmission.

By introducing black bursts with several lengths, black burst encoding can be extended to
allow symbols with more than 1 bit.2 An example with a 4-ary encoding – i.e., with two bits
per symbol – is presented in Fig. 2.3. Though the transmission of symbols starts again simul-
taneously, they may now differ in their length and are encoded such that longer black bursts
represent higher numbers. Consequently, a 0 is again realized by “no transmission”. Different
from the binary encoding, the symbol sequence on the medium is now the result of a symbol-
wise MAX operation. W.r.t. the duration of black bursts, two constraints have to be considered
to enable the utilization of n-ary encodings: First, the difference of durations of different types
of black bursts must be large enough to enable receiving stations to clearly distinguish differ-
ent symbols and to decode their value correctly. For this, inaccuracy of synchronization (see
Sect. 2.2.3) must be taken into account additionally. Second, the durations have also to be cho-
sen such that sending stations are able to switch to receive mode after the end of their transmis-
sion and to detect transmissions of larger black bursts. Otherwise, sending stations could not
determine the symbol sequence on the medium correctly. Depending on the used transceiver,
the additional times implied by these constraints can be very large. Thus, it is not possible to
declare that n-ary encodings (n > 2) are more efficient than a binary encoding without further
knowledge about synchronization and hardware.

If not specified differently in the following sections, black bursts are applied with binary
encoding, where 1s are encoded dominantly.

2.2.2 Applying Black Bursts in Multi-hop Networks

In multi-hop networks, nodes are only partially in sensing range of each other and further
steps become necessary to propagate black bursts in the whole network. One solution is the
subdivision of symbol times into several slots, where nodes transmit a symbol of their sequence
in the first slot and use subsequent slots to forward received symbols. This mode of operation
is illustrated in Fig. 2.4 with a topology with two hop diameter. While the sent bit sequences

2Black bursts with several lengths conform more to their original definition in [SK96, SK99]. However, they are
originally not used to encode symbols or to build sequences of symbols but for medium arbitration only.
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Figure 2.4: Network-wide propagation of black bursts in a multi-hop network.

are the same as in the single-hop example of Fig. 2.2, one bit time consists of two transmission
slots now. In the first slot of the first bit time, station Vb transmits its dominant bit, which is
forwarded by all receiving stations in the second slot. Thereby, also Vd observes a dominant
bit in the first bit time. Since there is no station sending a dominant bit in the second bit time,
the medium remains idle. In the third bit time, Va and Vb both send a dominant bit, which is
forwarded by node Vc to inform Vd. By forwarding black bursts, all nodes receive the same bit
sequence, which is again the result of an OR operation.

In [Kuh09], a different solution is presented to support the multi-hop propagation of domi-
nant bits. Instead of forwarding black bursts in rounds, a node, which has not sent a dominant
bit in the current bit time and observes the beginning of a medium occupancy, immediately
switches into transmission mode to forward the bit. While this solution allows smaller bit
times and is therefore more efficient, it has several drawbacks: First, black bursts encoding n-
ary symbols cannot be applied, since nodes do not know the duration of an observed medium
occupancy. For the same reason, nodes cannot check whether the duration of a medium occu-
pancy corresponds to a valid black burst. Thereby, the duration cannot be consulted to filter
interferences, which may become necessary in a noisy environment. Furthermore, the point in
time, when a medium occupancy starts, is less expressive and does not allow any conclusion
w.r.t. the distance in hops to the node, which sent the dominant bit first.

2.2.3 Prerequisites

To apply black bursts successfully, several demands on network and hardware must be met. A
first requirement is regarding network stability and interferences, which have to be prohibited
in order to avoid the reception of incomplete or adulterated symbol sequences. This require-
ment is summarized as single-network property [CGR12] and consists of two parts: First, there
must be no active nodes in sensing range running a different MAC protocol on the same com-
munication channel.3 Similarly, other external sources of interference (e.g., strong engines),
which could be detected as medium occupancy, have to be avoided. Second, all pairs of nodes
must be connected via some path of communication links4, which have to be reliable and stable

3Originally, the property concerns interference range only, which is, however, not sufficient for black bursts.
4Actually, this requirement is stronger than required, since black bursts do not contain modulated payload.
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during the transmission of symbol sequences. At first, we go one step further and require all
links to be symmetrical, but weaken this property in Sect. 3.6 in the context of ACTP.

Though the single-network property seems to be a strong limitation, it is stipulated by many
wireless protocols implicitly. Network performance with CSMA/CA-based protocols, for in-
stance, suffers enormously if external interference occupies the medium permanently [BGS07].
This has, for instance, been observed in [PRML06], where IEEE 802.11 [Ins12a] traffic had a
serious impact on an IEEE 802.15.4 [IEE03] network.5 To satisfy the single-network property,
measures like topological control, spatial division, and well-planned channel allocations can be
applied.

A second requirement for the successful application of black bursts concerns transceivers,
which must provide an upper bound on CCA and switching delays. Ideally, these delays are
constant, which usually holds for switching delays but is rarely given for CCA delays. CCA
delays, however, often come along with an upper bound – even with customary hardware.
From an efficiency perspective, all delays should be very small, because the smaller they are
the smaller are a black burst’s guard times and overall duration.

A further requirement is tick synchronization, which is needed to have a common starting
point of black burst transmissions. To ensure the correct assignment of dominant bits to their
position in the bit sequence, synchronization offset must be bounded deterministically. In a
single-hop network and with bounded CCA delays, synchronization can be achieved on de-
mand by prefixing each black burst-encoded bit sequence with a dominant Start-of-Frame bit
(SoF) and by letting all nodes synchronize to the fastest node. In multi-hop networks, an ad-
vanced internal or external synchronization method is required. A more detailed discussion
on this topic can be found in Sect. 4.1. In the following, we initially do not refer to a particu-
lar synchronization protocol but assume all nodes to be synchronized with a maximal offset of
dmaxOffset. The fact that the actual offset is usually much smaller than dmaxOffset is illustrated in
Fig. 2.5, where three nodes (Va, Vb, and Vc) are synchronized to a reference tick t0. The offset’s
impact on the detection of black bursts is investigated in Sect. 2.3.2 in more detail.

A last requirement for the utilization of black burst-based protocols is the knowledge about
an upper network diameter bound. In multi-hop networks, this knowledge is required to guar-
antee the network-wide propagation of black bursts. While there is no need to know the exact
diameter, it is in general desirable to have a very tight bound, since otherwise the efficiency
suffers from unused forwarding slots.

t0

t

maximal tick offset

ta tb tc

reference 
tick

local ticks of Va, Vb, and Vc

current local
tick offset

local ticks of Va, Vb, and Vc

( dmaxOffset )

Figure 2.5: Relation between dmaxOffset and nodes’ actual offset.

5Vice versa, IEEE 802.11 networks are only slightly affected (IEEE 802.11b) or not at all (IEEE 802.11g) from
interfering IEEE 802.15.4 traffic.
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2.3 Realization of Black Bursts

After the conceptual definition of black bursts in the last section, this section outlines aspects
of their realization. In this regard, it regularly refers to Texas Instruments’ (TI) CC 2420 trans-
ceiver [Tex07], which is very prevalent in WSNs and is also used for evaluations in Chapter 5.
Details on its hardware features can be found in Appendix A.2. First, this section investigates
the creation and transmission of black bursts. Afterwards, their reception is discussed.

2.3.1 Transmission of Black Bursts

The transmission of a black burst is always without preceding arbitration or clear channel as-
sessment. If there is an offset due to inaccurate synchronization, it can, in particular, happen
that a node starts a transmission, though the medium is already busy due to a black burst of
another node. Before a node occupies the medium, it has to switch its transceiver to transmis-
sion mode. From that moment, the node is no longer able to monitor the medium’s state. After
entering transmission mode, the transceiver places a signal on the medium, thereby increas-
ing the power level in the particular channel. The concrete character of the signal depends on
the transceiver’s options and implementation. With the CC 2420, alternatives are modulated
IEEE 802.15.4 MAC frames and unmodulated signals, which are available in the test mode. In-
dependent of the type of signal, the duration of the caused medium occupancy has to be long
enough to enable a reliable detection (see Sect. 2.3.2). After the transmission is complete, the
transceiver has to switch back to receive mode, which must be finished before the medium can
be monitored again. Since switching between modes usually takes some time, the resulting de-
lays have to be considered carefully. The IEEE 802.15.4 [Ins11] standard, for instance, prescribes
switching delays of at most 12 symbol periods (192 µs in the 2.4 GHz band).

In this thesis, all black burst-based protocols are realized with TI’s CC 2420 transceiver and
modulated MAC frames. Further MAC layer features – like automatic acknowledgments – are
not use, but configuration options are exhausted to decrease the duration of black bursts. The
applied frame format is no longer IEEE 802.15.4-compliant and shown in Fig. 2.6. Compared to
a standard-compliant frame, the preamble is shortened by 2 bytes and the checksum is omitted.
The length of the payload is set to the minimal possible value (1 byte6). The resulting frames
have a length of 5 bytes (10 symbols), which corresponds to a transmission duration of dbb =

160µs. W.r.t. switching delays, the delay to switch from transmission to reception mode is
given with 192 µs in the data sheet [Tex07], but has been empirically determined with 128 µs
[Eng13, ECG14]. The opposite direction can be configured with either 192 µs or 128 µs.

2 bytes

Preamble

Synchronization Header

1 byte

Start of Frame
Delimiter (SFD)

1 byte

Frame Length

PHY Header PHY Service
Data Unit

1 byte

PayloadPreamblePreamblePreamble

Synchronization Word

Figure 2.6: Irregular frame format to realize black bursts with TI’s CC 2420 transceiver [Tex07].

6The CC 2420 can also be configured to send frames with 0 bytes payload. Since we discovered that the
transceiver behaves faulty with this configuration (see [Eng13] and Chapter 5), we stay with 1 byte payload.
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2.3.2 Detection of Black Bursts

Since black bursts do not carry modulated payload, their reception is only via the transceiver’s
CCA mechanism. Because CCA is prescribed by IEEE 802.15.4 [Ins11], it is included in all
standard-compliant transceivers. With TI’s CC 2420 transceiver, the current CCA status is avail-
able at an output pin. On the Imote 2 platform, this pin is connected to a GPIO pin of the micro-
controller, which enables notifications by hardware interrupts when the CCA status changes.
In the following, we first identify classes of errors that can occur w.r.t. the detection of black
bursts. Afterwards, CCA variants of IEEE 802.15.4-compliant transceivers are investigated in
detail. Thereafter, the impact of CCA delays is discussed.

2.3.2.1 Types of Errors

In general, two types of errors can occur with black burst-based communication:

• A false positive occurs, if a dominant bit is detected but no station in sensing range is
sending a black burst. This leads to a wrong binary 1 in the received bit sequence.

• A false negative represents the opposite error, i.e., if a sent black burst is lost. As result, the
detected bit sequence has a wrong 0.

Both error classes are independent of the concrete CCA implementation. In multi-hop net-
works, these errors do not only have an impact on the monitored bit sequence of a single node
but are possibly propagated into further parts of the network.

If all prerequisites like the single-network property are met, neither false positives nor false
negatives happen. In noisy environments like in production plants and without an adequate
setup and node placement, the single-network property does potentially not hold. To detect
and correct errors in such environments, a possible countermeasure is Forward Error Correc-
tion (FEC). FEC is based on increasing redundancy and is, for instance, used by IEEE 802.15.1
(Bluetooth) [IEE05], where bits in frame headers are repeated three times. This topic is further
discussed in Sect. 3.6.2 in the context of ACTP.

2.3.2.2 Types of CCA

CCA is a measure to monitor the state of the medium and is located in the physical layer
of the protocol stack. Since it is crucial for all CSMA-based MAC protocols, it is supported
by almost all wireless transceivers and, in particular, stipulated by prevalent standards like
IEEE 802.11 [Ins12a] and IEEE 802.15.4 [Ins11]. For the realization of black bursts, it is essential
to understand how CCA is implemented in the deployed transceiver and which configuration
options exist. The following paragraphs provide a survey of its implementation in TI’s CC 2420
transceiver [Tex07], which is in most instances prescribed by the IEEE 802.15.4 standard [Ins11].

The maximal time to perform CCA and to detect the current medium state is predetermined
by the standard with eight symbol periods, which corresponds to 128 µs in the 2.4 GHz PHY
layer of IEEE 802.15.4 that is realized by the CC 2420 transceiver. For this PHY layer, the stan-
dard describes three CCA modes: Energy detection, carrier sense, and a combination of both.

With energy detection, the transceiver reports on a busy medium if the energy level on the
medium exceeds a configurable threshold, which has to be set to a larger value than the noise
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floor. Energy detection is the simplest measure to detect a busy medium. Since it is non-
coherent with signal characteristics like modulation and spreading technique, it is error-prone
in environments with much interference and noise. Due to this demand on large Signal-to-
Noise Ratios (SNRs), energy detection is more applicable in narrow band systems than in wide-
band systems [RR06].

The second CCA mode (carrier sense) requires the detection of valid IEEE 802.15.4 carriers
and does not consider the medium’s energy level. With this mode, the CCA mechanism re-
ports on a busy medium only if a signal with valid modulation and spreading characteristics
is detected. The third CCA mode is a combination of the first two modes, i.e., the medium is
reported busy if the signal characteristics coincide with a valid IEEE 802.15.4 signal AND/OR7

the energy level exceeds the threshold. While the detection of valid IEEE 802.15.4 carriers works
well if only one station is sending, it suffers from collisions and invalid chip sequences if there
are multiple senders [Kuh09]. This is also confirmed in [KdI07], where the number of correctly
received black bursts decreases with increasing number of senders. Thus, using energy detec-
tion to detect black bursts is the better choice. Therefore, it is also assumed in the rest of this
thesis and described with greater detail below.

In TI’s CC 2420 transceiver, energy detection works on Received Signal Strength Indicators
(RSSIs), which can be converted into Received Signal Strengths (RSSs in [dBm]) by adding a
constant offset. The RSSI is averaged over eight symbol periods (128 µs) and updated for each
symbol (every 16 µs). If the RSSI exceeds a configurable threshold, the channel is indicated as
busy. The transceiver furthermore supports hysteresis to avoid reporting on flapping medium
states. While RSSIs were very imprecise and deficient with older hardware, experiments in
[SDTL06] demonstrate that CC 2420’s RSSI implementation provides a very good estimator for
the Packet Reception Ratio (PRR). They also show that RSSI values are very similar on both
sides of a link and that they have very small variations over time. Similar results regarding link
reciprocity and stability could be obtained in our experiments [CM10, CMS10]; even for links
without line-of-sight. All these properties are beneficial for a reliable detection of the current
medium state and, thus, for the implementation of black bursts.

Figure 2.7 illustrates CC 2420’s mode of operation w.r.t. RSSI calculation and CCA. The figure
shows the course of the RSSs of two MAC frame transmissions with 11 bytes length (352 µs),
which took place in the same environment and with the same node placement. During both
transmissions, the noise level was about -93 dBm. The transmission power was reduced from
0 dBm in Fig. 2.7(a) to -25 dBm in Fig. 2.7(b), thereby reducing the SNR from 58 dB to 20 dB.
Though both figures suffer from measuring inaccuracy, since RSSIs could only be monitored
with intervals of about 11 µs8, they provide some insights into CC 2420’s RSSI calculation: First,
the actual RSS of a frame is not discovered immediately after detecting the first symbol of the
transmission but seven symbol periods (112 µs) later.9 This delay occurs due to the averaging of
the RSSI over eight symbols. Similar considerations hold for the end of the transmission. Sec-
ond, the RSS does neither jump directly from the noise floor level to the actual RSS of the frame
(or vice versa) nor does it increase (decrease) continuously between both extrema. Instead, the
increase (decrease) is step-wise, where the step width corresponds to the RSSI update inter-

7The standard allows both AND and OR combinations of both conditions.
8The bottleneck in determining the current RSSI value is not the microcontroller but the interconnection to the

transceiver via SPI bus.
9Due to the measuring inaccuracy, the delay can be up to 123 µs in the plot.
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Figure 2.7: Illustration of CC 2420’s CCA mechanism for two transmission power levels. For
illustrative purpose, the CCA threshold is given in dBm.

val. The plots furthermore illustrate that the signal strength has a large impact on the CCA
delay. With -25 dBm transmission power (Fig. 2.7(b)), CCA indicates the medium occupancy
very late, because the RSSI exceeds the CCA threshold not until the 6th symbol of the trans-
mitted frame is received. In the opposite way, the end of transmission is detected with a large
delay when using 0 dBm transmission power (Fig. 2.7(a)). These delays have to be considered
in implementations of black bursts and are investigated in the following sections in more detail.

2.3.2.3 Impact of the CCA Delay on the Detected Duration of Single Black Bursts

As shown in the previous section, the delay to perform CCA can add up to dmaxCCA = 128µs
with TI’s CC 2420 transceiver. In this section, the impact of this delay on the observed duration
of valid black burst transmissions is discussed.

In Fig. 2.8, the transmission of a dominant bit is shown, where the duration of its detection
is increased maximally. This case occurs if the signal is very strong, since this provokes that
the start of the transmission is detected immediately – i.e., the first received symbol is sufficient
such that the RSSI value exceeds the CCA threshold – and that the end of the transmission is
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Figure 2.8: Maximal detected duration of a single black burst.

perceived with maximal delay – i.e., if eight symbols are required after the end of the transmis-
sion to let the RSSI fall below the CCA threshold. Formally, the maximal detected duration of
a single black burst calculates to:

dmaxSingleBb = dbb + dmaxCCA (2.1)
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dbb

Figure 2.9: Minimal detected duration of a single black burst.

The impact of weak signals on black burst detection is illustrated in Fig. 2.9. Here, the RSSI
exceeds the threshold not until the eighth symbol of the transmission but the end of the trans-
mission is already detected with the first symbol thereafter. In summary, the minimal possible
duration of a detected single black burst yields:

dminSingleBb = dbb − dmaxCCA (2.2)

This equation shows that the duration of a black burst dbb must not be smaller than the
maximal CCA delay dmaxCCA, since otherwise the receiver may possibly not see any medium
occupancy and miss the black burst.

2.3.2.4 Impact of Synchronization Inaccuracy on the Expected Detection Time of Black Bursts

To communicate with black bursts reliably, it is crucial that a node associates a detected black
burst with the same transmission slot as the sender of the black burst. But due to synchroniza-
tion inaccuracy, there is, in general, a discrepancy between the start time of the transmission at
the sender and the time, at which the receiver expects the sender to start. As a consequence,
the detection of a black burst is shifted from the local point of view of the receiver. In order to
still enable the correct assignment of a detected black burst to the sender’s transmission time,
this discrepancy must be quantified. The following investigates this issue in more detail.

Since black bursts require (tick) synchronization with bounded offset (see Sect. 2.2.3), the
maximal synchronization inaccuracy is known at all network nodes. However, the order, in
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Figure 2.10: Synchronization inaccuracy from the local point of view of node Vb.

which nodes perceive their local ticks, is unknown, which has to be considered when imple-
menting black bursts. Figure 2.10 illustrates this issue with three nodes. Due to inaccurate
synchronization, all nodes perceive their local ticks at different global points in time and have
therefore local offsets to each other. These local offsets are in general variable and shown from
node Vb’s point of view. Due to the lack of global knowledge, node Vb neither knows its current
local offsets to Va and Vc nor the network’s current worst-case offset doffset. Instead, it must rely
on the offset bound dmaxOffset, which is provided by the synchronization protocol. In this regard,
two cases must be distinguished, which are depicted in the figure with case A and case B: In
case A, Vb would perceive its tick after all other nodes, whereas in case B, Vb’s tick would be
located before all other local ticks. Though both cases cannot occur simultaneously, they must
be considered together, since the current situation is unknown without global knowledge and
usually somewhere in between – as in the example.

t

t
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dswitchTx

tb,earliest

dbb

dmaxOffset

Va (sender)

Vb (receiver)

tb transmission

detection
dminDelay

Figure 2.11: Premature detection of a black burst due to synchronization offset.

In Fig. 2.11, it is assumed that Vb perceives its tick dmaxOffset after Va, which initiates the trans-
mission of a black burst at ta. At ta + dswitchTx, where dswitchTx is the switching delay from
reception to transmission mode, Va starts to occupy the medium. Due to its offset, Vb does not
detect the black burst at tb + dswitchTx, when it would expect the start of a possible black burst,
but at tb,earliest = tb + dminDelay, where dminDelay is shorter than dswitchTx and calculated as follows:

dminDelay = dswitchTx − dmaxOffset (2.3)

Note that dminDelay becomes negative if the maximal offset is larger than the switching delay. In
this case, Vb could observe the black burst before it would expect Va to initiate the transmission.
Nevertheless, assigning the black burst to the correct transmission time must also be possible
and non-ambiguous in this case.
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Figure 2.12: Late detection of a black burst due to synchronization offset.

Figure 2.12 illustrates the opposite case, in which Vb perceives its tick dmaxOffset before Va.
Here, the black burst is detected by Vb later than expected at tb,late = tb + dlongDelay, with:

dlongDelay = dswitchTx + dmaxOffset (2.4)
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Figure 2.13: Latest detection of a black burst due to synchronization offset and CCA delay.

From node Vb’s perspective, dlongDelay is, however, not the largest possible detection delay of
a valid black burst transmission, but the delay can additionally be increased by the CCA delay
as shown in Fig. 2.13. The resulting delay dmaxDelay is calculated as follows:

dmaxDelay = dswitchTx + dmaxOffset + dmaxCCA (2.5)

Since in all cases, the black burst is sent at a valid point in time, Vb must record the reception
of a dominant bit. Formally, it has to associate the detected black burst with tb + dswitchTx, which
is the time at which Vb would expect the start of a black burst detection, if the detection by CCA
starts within the following interval:

[tb,earliest , tb,latest] (2.6)

[tb + dswitchTx − dmaxOffset , tb + dswitchTx + dmaxOffset + dmaxCCA] (2.7)

This shows again the importance of bounded values for dswitchTx, dmaxOffset, and dmaxCCA.

2.3.2.5 Impact of Synchronization Inaccuracy on the Duration of Overlapping Black Bursts

If several nodes transmit overlapping black bursts, synchronization offset can also cause the
detection of an elongated medium occupancy. Resulting consequences are now investigated.

Figure 2.14 illustrates the maximal elongation of a black burst-caused medium occupancy by
two examples: In Fig. 2.14(a), senders Va and Vb are synchronized with maximal offset dmaxOffset.
Since dmaxOffset is smaller than the duration of a black burst transmission dbb, the two black
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Figure 2.14: Elongation of medium occupancy due to overlapping black burst transmissions.

bursts overlap partially and prolong the medium occupancy by dmaxOffset. A similar situation is
shown in Fig. 2.14(b), where three nodes send black bursts simultaneously but with local off-
sets. Though this example assumes that dmaxOffset is larger than dbb, the three transmissions are
shifted such that there is one large medium occupancy. Consequently, the medium occupancy
is prolonged by dmaxOffset as well. If furthermore CCA delay is taken into account, the duration
of the detected medium occupancy can additionally be increased by dmaxCCA as shown for both
situations. Thus, the maximal possible detection duration calculates as follows:

dmaxBb = dmaxOffset + dbb + dmaxCCA (2.8)

In addition to prolonging the medium occupancy, a large offset can also cause the detection
of separate black bursts. This case is shown in Fig. 2.15 and requires special attention, since the
receiver Vc must store the reception of one dominant bit only, yet it actually detects two black
bursts.

The maximal possible detection duration can be used to filter invalid medium occupancies
and to avoid false positives. Similarly, the minimal possible duration can be consulted to filter
too short medium occupancies. Because synchronization offset does not shorten a medium
occupancy, this duration has already been given in Eq. 2.1:

dminBb = dminSingleBb = dbb − dmaxCCA (2.9)
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Figure 2.15: Detection of two consecutive black bursts due to very large synchronization offset.

In summary, a node accepts a medium occupancy as dominant bit if its duration is within
following interval:

[dminBb , dmaxBb] (2.10)

[dbb − dmaxCCA , dmaxOffset + dbb + dmaxCCA] (2.11)

2.4 Improvement of Black Burst Implementations

Since communication with black bursts is different from communication with regular frames,
wireless transceivers are not optimized for their application. However, transceivers often pro-
vide configuration options, which can improve black burst implementations w.r.t. efficiency
and reliability. In the following, such options are discussed for TI’s CC 2420 transceiver [Tex07].

2.4.1 Unique Synchronization Words

In our implementation, a black burst is realized as regular MAC frame (see Sect. 2.3.1). Thus,
it is possible that a black burst is demodulated as regular MAC frame if the receiving node can
detect the correct chip sequence of the frame’s preamble and SFD byte.10 But since black bursts
contain no regular payload, there is actually no need to receive a black burst as MAC frame
and, thus, it is conceivable to prevent their reception as MAC frame.

Looking into the IEEE 802.15.4 standard [Ins11] reveals that the reception of a black burst as
MAC frame is not only unnecessary but has to be avoided at any price, because according to
the standard, a reception is considered to be in progress until the number of octets specified in
a frame’s length field has been received. During this “reception time”, all CCA modes must
report a busy medium; even if the transmission is no longer in progress and/or the medium’s
energy level is below the CCA threshold. This behavior is indeed correct if the length field of
the received frame is valid, but if the length field is corrupted, which is commonly the case
for overlapping transmissions, it will cause the adulteration of the perceived medium occu-
pancy. This, in turn, can lead to false negatives and threatens the reliability of black burst
detections. Corresponding implications have actually been observed in previous experiments

10Because the preamble of the frame that is used as black burst is shortened and shorter preambles reduce the
probability for a successful synchronization between sender and receiver, the probability to receive a black burst as
MAC frame is already reduced but still existent without further measures.
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[Eng13], where valid black bursts were sent but the CCA mechanism of the CC 2420 transceiver
indicated medium occupancies with far too long durations.

To prevent the reception of black bursts as MAC frames, we configure each CC 2420 transcei-
ver with a unique synchronization word (see frame format in Fig. 2.6). The synchronization
word has a length of four symbols [Tex07] and defines the last part of the preamble and the
content of the SFD byte. It is used by the transceiver to search for valid frames on the medium
and to distinguish them from noise and interference. By setting unique synchronization words
on each node, nodes will no longer receive black bursts as MAC frames. Thus, the CCA mech-
anism is no longer confused by corrupted length fields but based on the medium’s energy level
only. To re-enable communication with regular frames after the application of black bursts,
the default synchronization word has to be restored. As further measure to avoid the recep-
tion of black bursts as MAC frames, the demodulator correlation threshold, which a chip se-
quence must exceed before the transceiver searches for the SFD, can be set to maximum [Eng13].
Thereby, the probability of undesired frame receptions is additionally reduced.

2.4.2 Calibration of the CCA Threshold

The calibration of the transceiver’s CCA threshold is a crucial step w.r.t. the reliability of black
burst-based communication. If the threshold is set too high, the delay to detect the beginning
of a black burst and the probability of false negatives increase. If, on the contrary, the threshold
is too low, noise can be misinterpreted as black burst and false positives can arise. Conse-
quently, the CCA threshold should be configured as a function of noise floor and expected
signal strengths. In this regard, it has to be considered that noise and the RSSs of transmissions
are usually environment- and channel-specific [CM10, CMS10].

The range of black bursts is in general independent of the range of regular MAC frames,
since black bursts are detected by their RSS and the CCA threshold, whereas regular MAC
frames require the correct detection of symbols. Thus, it is possible that black bursts can be
sent over larger, equal, or smaller distances than MAC frames. However, a usual assumption
is that sensing ranges are larger than communication ranges, which is, for instance, confirmed
in [KNE03] by disproving the mistaken axiom “If I can hear you at all, I can hear you perfectly”.
Hence, it is reasonable to assume that the range of black bursts (sensing range) is larger than
the range of MAC frames (communication range), yet inspecting the CCA threshold is required
to confirm this statement.

The option to calibrate the CCA threshold renders possible to configure the CCA mecha-
nism such that communication and sensing ranges become almost equal. For this purpose, the
threshold must be set to a signal strength, at which regular MAC frames are just received cor-
rectly. This demands a high correlation between RSSs and frame reception rates, which seems
to be true for modern wireless transceivers like TI’s CC 2420 as supported by experiments in
[SL06, RCM+06]. W.r.t. the approximation of both ranges, it must, however, be kept in mind
that overlapping black burst transmissions interfere constructively11. Thus, two overlapping
black bursts may reach a node, which is not reached by a single transmitter.

11Destructive interference is prevented by design due to different synchronization words. For a proof by experi-
ments, see Chapter 5.
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2.4.3 Back Calculation of the Transmission Start of Black Bursts

To assign dominant bits to their correct position in the bit sequence and to accurately determine
the duration of a medium occupancy, it is crucial to identify the start of transmissions with high
precision. This time is, however, distorted by synchronization offset and CCA delay. While
we assume that the offset must be condoned, the CCA mechanism’s mode of operation offers
opportunities for optimization, which are investigated in the following.

According to the data sheet of the CC 2420 transceiver [Tex07] and as illustrated in Fig. 2.7,
the CCA status is calculated by comparing the RSSI against a threshold. The RSSI is averaged
over eight symbols and is formally calculated for some symbol time i as follows:

RSSI(i) = (
i

∑
j=i−7

symbol(j))/8, (2.12)

where symbol(j) is the signal strength indicator of the j-th symbol.

After a transmission starts and under the assumption that its signal strength is sufficiently
larger than the noise floor, the RSSI value in the transceiver of a receiver increases with each
new symbol. After eight symbols, the RSSI value reaches the maximum that can be converted
to the transmission’s actual RSS, which is assumed to be almost constant. Hence, a receiver can
back calculate the start time of a transmission by monitoring the gradient of the RSSI value,
by storing the timestamp when the value reaches its maximum first, and by subtracting seven
symbol durations from this timestamp. By this approach, the start of a transmission can be
derived more accurately, yet some factors – like the symbol duration’s granularity of 16 µs –
still remain as inaccuracy. As a further advantage, the detection accuracy becomes independent
of the CCA threshold, which has a large impact on delays that occur until the CCA mechanism
indicates a busy medium.

Figure 2.16 illustrates the back calculation of the start time of a transmission with the exam-
ples from Sect. 2.3.2. The time when the CCA mechanism reports on a busy medium is marked
with cca irq; the time when the maximal RSSI value is observed with max rssi. The arrow start-
ing from this mark indicates the subtraction step with seven symbol durations (-112 µs), where
the arrowhead represents the back calculated start time. Consequently, the improvement com-
pared to the CCA interrupt’s timestamp corresponds to the distance between the cca irq line and
arrowhead. In the example with 0 dBm transmission power, the back calculation improves the
accuracy only slightly (6µs more accurate detection), because the delay between transmission
start and CCA interrupt is already very small due to the large signal strength. In the second
example with -25 dBm transmission power, the improvement is more significant (69µs), since
the CCA interrupt occurs very late.

If there are more senders with overlapping but slightly shifted transmissions, the RSSI will
probably not converge within eight symbols after the CCA interrupt. In this case, the back cal-
culated timestamp is probably larger than the timestamp of the CCA interrupt and therefore
more inaccurate. To guarantee that the optimization does not worsen the accuracy, the times-
tamp of the CCA interrupt has to be used in this case as fallback. In sum, the presented back
calculation provides a measure to improve the average accuracy of black burst detection but
cannot enhance the worst-case accuracy.
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Figure 2.16: Back calculation of the start time of a transmission.

2.5 Discussion

This chapter has introduced a communication primitive that is based on the fact that not ev-
erything is lost in case of collisions. If, in particular, transmissions start simultaneously, useful
information can be encoded in the start and duration of the caused medium occupancy. This
fact is the foundation for black bursts, which are transmissions without modulated payload but
with pre-defined starting times and duration. By encoding a dominant bit by the transmission
of a black burst and a recessive bit by the absence of medium occupancy, simultaneous trans-
missions of black burst-encoded bit sequences yield a sequence on the medium that is the result
of a bit-wise OR operation on all sent sequences. This principle can also be extended to n-ary
symbols by encoding symbol values with black bursts of different length. Thereby, the results
of symbol-wise MAX operations are observable on the medium. Since black bursts have no
payload in the usual sense, their detection is via the CCA mechanism of the transceiver only.
In this regard, energy detectors, which are included in all IEEE 802.15.4-compliant transceivers
[Ins11], state an applicable CCA variant.

One key requirement of black bursts is the availability of synchronization with bounded off-
set. On the one hand, this requirement must be met to separate time periods, in which black
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burst transmissions are enabled, from time periods with transfer of regular data frames. On
the other hand, black burst transmissions would not transport any information if receiving
nodes could not associate the time of detection with a bit/symbol time. A further require-
ment for the application of black bursts is the validity of the single-network property, which
is stated here explicitly but stipulated by almost all wireless protocols. It is advisably verified
by experiments in the final target environment, since simulations and analyses are often not
adequate to exactly reproduce environment-specific signal propagations. In this regard, we
could, for instance, show that combinations of channels and node positions have a significant
influence on the RSS of data frames [CM10, CMS10]. Thus, it is in general advisable to follow
a parameterized protocol design, in which configuration options like transmission power and
CCA threshold are not fixed but determined in accordance with the environment and its noise
floor. Though the requirements appear to be very demanding, they pave the way for black
bursts, collision-resistant encoding of bits and symbols, and deterministic protocols like ACTP,
which is introduced in the next chapter. Depending on the concrete scenario, these advantages
predominate and state a price that is worth paying.

Besides introducing the concept of black bursts, this chapter also provides a derivation of
their duration, which is mainly dictated by characteristics of the wireless transceivers. In this
regard, we refer to TI’s popular IEEE 802.15.4-compliant CC 2420 transceiver, which also serves
as evaluation platform of our implementation (see Chapters 3 and 5). So far, processing delays
that are additionally required by the microcontroller are omitted, yet they must be considered
in final implementations. Referring to this, [Eng13, ECG14] provides numerous information on
relevant run-time costs.

Because black burst-based communication deviates from communication with regular data
frames, current transceivers like TI’s CC 2420 are consequently not optimized for it. Yet, they
are sufficient to demonstrate the feasibility and advantages of black bursts. With the CC 2420
transceiver, the drawbacks of an off-the-shelf platform are observable by very large switch-
ing and CCA delays. However, it also offers configuration options, which can be exploited to
optimize its application to black bursts. Some of them – like shortening the preamble of MAC
frames – are surveyed in this chapter. By monitoring the gradient of the RSSI value, the CC 2420
transceiver furthermore provides a way to back calculate the start time of a transmission more
accurately. Thereby, receivers can determine the transmission start of black bursts more accu-
rately, which also helps to improve the average accuracy of other black burst-based protocols
like the synchronization protocol Black Burst Synchronization (BBS, [GK11a, GK11b]).
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The Arbitrating and Cooperative Transfer
Protocol (ACTP)

In the previous chapter, black bursts have been introduced as communication primitive for
wireless networks. This chapter now proposes a deterministic communication protocol with
predictable runtime, which adopts this communication primitive. The protocol is called Ar-
bitrating and Cooperative Transfer Protocol (ACTP) and enables value-based arbitration and co-
operative data transfer in dense wireless networks. It is fully distributed and an instance of
a so-called binary countdown protocol, whose famous representative in the wired domain is
CAN [Int04]. By presenting a binary countdown protocol for wireless networks with multi-hop
and network-wide application range, this chapter refutes previous works [WMW05, MLK06],
which negate the implementability of such protocols in the wireless domain. Compared to
state-of-the-practice medium access schemes that are based on TDMA or FDMA, ACTP grants
exclusive access right to the medium on demand by solving contest in a deterministic and
value-based way. Thereby, ACTP closes a gap of existing wireless medium access schemes and
represents a suitable solution w.r.t. reliable communication when no fixed message schedules
are available.

The rest of this chapter is structured as follows: Section 3.1 motivates the benefits of a de-
terministic, value-based arbitration protocol. With ACTP, Sect. 3.2 introduces such a proto-
col, explains its mode of operation, and derives the protocol’s timings. In Sect. 3.3, ACTP’s
network-wide application is presented. Sections 3.4 and 3.5 then explain ACTP’s cooperative
application mode and the protocol’s application with radii that are smaller than the network
diameter. Errors caused by situations, in which the single-network property is violated, and
countermeasures are discussed in Sect. 3.6. Section 3.7 surveys an SDL specification of ACTP
and two manual implementation versions. Finally, Sect. 3.8 provides a discussion and com-
pares ACTP to state-of-the-practice medium access schemes.

Results of this chapter have been published in [8], [9], [12], [14], [16], [20], and [23].

3.1 Motivation

To achieve a desired quality-of-service in wireless networks, many protocols have been pro-
posed avoiding simultaneous transmissions in the same communication channel and collision
domain. For this purpose, they apply medium access schemes like TDMA, FDMA, SDMA
(Spatial Division Multiple Access), or combinations of them.

With TDMA, transmissions are temporally serialized, requiring synchronization between
communicating nodes and coordinated transmission schedules, which, in turn, demands ex-
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act knowledge about nodes’ communication volumes and patterns. If these are unknown or if
nodes create sporadic or even aperiodic network traffic, overbooking is required, resulting in a
waste of network resources or disqualifying TDMA at all. FDMA, in turn, does not subdivide
time into transmission slots but frequencies into communication channels. Similar to TDMA,
FDMA requires coordination and synchronization among nodes to enable rendezvous on a par-
ticular communication channel, since wireless nodes – and, in particular, wireless sensor nodes
– are usually equipped with a single transceiver only. Like TDMA and FDMA, SDMA’s main
effort incurs either offline by configuration or at runtime and includes adequate node place-
ment, the installation of directional antennae, and the calibration of the transmission power of
nodes. Unlike TDMA, FDMA and SDMA increase network throughput by allowing simulta-
neous transmissions, yet they make higher demands on hardware or manual effort.

In static networks with known communication demands, combinations of TDMA, FDMA,
and SDMA can often provide adequate solutions with high quality-of-service. In this regard,
it has, however, to be noted that concrete realizations often suffer from self-made limitations.
IEEE 802.15.4 [Ins11], for instance, indeed applies TDMA in so-called Contention Free Peri-
ods (CFPs), but only allows seven communication slots (called Guaranteed Time Slots) per PAN
(Personal Area Network) coordinator and superframe. Another example with TDMA, but lim-
itations, is the industrial standard WirelessHART [Int10], which supports significantly more
time slots but only with a fixed duration of 10 ms.

Since communication solutions with TDMA, FDMA, or SDMA are optimized for long-lasting
message schedules, they are usually too inflexible if communication demands are unknown
and variable or if the network is very dynamic. In such situations, access to the medium must
often be granted dynamically and priority-based, which is not supported by any of them.

In wired systems, a well-known solution providing deterministic value-based arbitration is
CAN [Int04], a wired single-hop communication bus, which is prevalent in the automotive
domain. In CAN, contest among stations is solved by applying a binary countdown protocol
during an arbitration phase that precedes the actual transmission of data. During the arbitra-
tion phase, stations start to transmit unique message identifiers simultaneously and bit-wise,
where a 0 is realized by a dominant bus level and a 1 by a recessive one. The principle of CAN’s
arbitration is illustrated in Fig. 3.1 by an example with four bit identifiers and two competing
stations. During the third bit time, station 1 sends a recessive 1, detects the dominant 0 of sta-
tion 2, and stops competing. After the fourth bit, station 2 is aware of winning the contest, since
it has sent its identifier completely, and all other nodes including station 1 know the winner’s
identifier (01002), since it has been observed on the medium.

While CAN looks back to a history of several decades and is installed in millions of cars, the
idea of its binary countdown arbitration can hardly be found in wireless protocols. There are

station 1

station 2

bus level

dominant

recessive

dominant

recessive

dominant

recessive

0 0 01

0 0 01

0 1 1 0

Figure 3.1: Medium arbitration by binary countdown in CAN [Int04].
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even papers, which state that this kind of arbitration cannot be transferred to wireless systems.
[WMW05, MLK06], for instance, conclude that CAN cannot be adopted in the wireless do-
main due to the lack of full-duplex transceivers and the hidden station problem. Similar state-
ments (“no such arbitration is possible for wireless channels”) can be found in [TNT07, NL09],
where CAN is presented as wired solution for a control theoretical problem called Try-Once-
Discard (see also Sect. 4.2.2). In the following, these statements are disproved by the presenta-
tion of ACTP, which implements CAN’s arbitration approach for wireless multi-hop networks.
Though ACTP is not the first binary countdown protocol for wireless networks, it outperforms
previous protocols in terms of multi-hop support, overhead, and energy consumption. Detailed
comparisons and a survey of related work can be found in Chapter 6.

3.2 ACTP – Protocol Description

The Arbitrating and Cooperative Transfer Protocol (ACTP) is a binary countdown protocol for
wireless multi-hop networks. Since it incorporates black bursts to encode bits in a collision-
protected way, it requires all nodes to be synchronized. In the following, it is assumed that
all nodes are synchronized with a maximal offset of dmaxOffset. The installation of ACTP in a
complete setup with integrated synchronization protocol will be treated in Chapter 4.

3.2.1 Mode of Operation

Transferring CAN to the wireless domain opens the question of how to deal with the hid-
den station problem. Yet, almost all wireless binary countdown protocols ignore this problem
completely and forbid hidden stations by requiring the sensing range to be larger than commu-
nication plus interference range [BPC+07]. In the following, we do not ignore hidden stations
but present ACTP with a configurable application range of nhops hops. This range will be called
arbitration radius and depends on the protocol’s application context. To provide deterministic
medium arbitration despite hidden stations, an adequate value is, for instance, nhops = 2.

During its execution, ACTP subdivides time into different time slots (see Fig. 3.2). An entire
ACTP run with an arbitration radius of nhops (= 4 in Fig. 3.2) and bit sequences, which are also
called arbitration sequences in the context of ACTP, of length nbits (= 3 in Fig. 3.2) is called ACTP
phase. An ACTP phase, in turn, is subdivided into bit phases, where one bit phase includes
the time to process a single bit and to propagate this bit over nhops hops. Bit phases are again
divided into bit rounds, comprising the time to process one bit along a single hop. For each
ACTP run, all participating nodes must use identical values for nbits and nhops.

bit round bit phase
nhops   bit round

ACTP phase
nbits   bit phase

Figure 3.2: Terminology of ACTP.
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passiveactive

waiting sensing

sensing

waiting

idle

repeating

Tick [round < n_hops] /
send(BlackBurst); round++;

BlackBurst /
sequence[phase]:=1;

BlackBurst /
sequence[phase]:=1;

Tick [round < n_hops] /
round++;

Tick [round < n_hops] /
round++;

Tick [round < n_hops] /
round++;

Tick [round < n_hops] /
round++;

[sequence[phase] = 0]
[sequence[phase] = 1]
/ send(BlackBurst);

/ sequence[phase]:=0;

Tick [round = n_hops
&& phase < n_bits] /
round:=1; phase++;

Tick [round = n_hops &&
phase = n_bits] / stopTicks();

Tick [round = n_hops &&
phase = n_bits] / stopTicks();

StartACTP [sequence = NULL] /
round:=1; phase:=1; startTicks();

StartACTP [sequence != NULL] /
round:=1; phase:=1; startTicks();

Tick [round = n_hops
&& phase < n_bits] /
round:=1; phase++;

Variables
sequence - Holds the black burst bit sequence;
    if a station does not want to participate, the 
    variable is initially NULL;
    at the end of ACTP, the variable holds the 
    bit sequence of the winner
round - Current bit round of the actual phase
phase - Current bit phase

Constants
n_hops - Arbitration radius in number of hops
n_bits - Length of arbitration sequences in bits

Signals
StartACTP - Signalizes the synchronous start of ACTP
Tick - Indicates the beginning of a new bit round
BlackBurst - Send/Detection event of a black burst

Functions
startTicks() - Resets the tick timer and causes the 
    periodical creation of Tick signals
stopTicks() - Stops the periodical creation of Tick 
    signals

Figure 3.3: UML [Obj22] state machine of a single ACTP run.

ACTP’s protocol behavior is illustrated in Fig. 3.3 by a statechart. The statechart assumes
system ticks for each new bit round and is simplified, since it does not go into detail w.r.t. syn-
chronization offset and transceiver-depending delays. These factors are discussed in Sect. 3.2.2.

The start of an ACTP phase occurs on each node simultaneously, where the point in time is
either configured offline or by dynamic agreement. Nodes holding a bit sequence switch to
state active, in which they process their sequence bit-wise, starting with the most significant bit.
If a node’s currently processed bit is a dominant 1, it sends a black burst in the first bit round
of the corresponding bit phase. Afterwards, it waits in substate waiting until the start of the
next bit phase, when it continues with the next bit of its sequence. If a node’s current bit is a
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recessive 0, it switches to substate sensing, where it tries to detect black bursts of other nodes. If
this actually happens in any bit round, the node stops processing its bit sequence and switches
to state passive.

A node not holding a bit sequence monitors detected bits and acts as repeater. Therefore, it
directly switches to state passive and listens to the medium. If the node does not detect a black
burst during an entire bit phase, it stores a recessive 0 for this bit phase. If a black burst is de-
tected, the node stores a 1 and switches to substate repeating, where it waits until the beginning
of the next bit round. If this bit round is still in the same bit phase, the node sends a black burst
to propagate the dominant bit one hop along in order to ensure its nhops propagation. If, on
the other hand, the next bit round already lies in the subsequent bit phase or after the end of
the ACTP phase, no black burst is sent and the node either re-enters state passive to detect new
black bursts or stops the protocol.

Since both nbits and nhops are configurable but fixed, all nodes terminate the protocol simulta-
neously. Thus, the duration of an ACTP phase is constant and pre-calculable. All nodes still in
state active when stopping the protocol have sent the numerically greatest arbitration sequence
and arise as winners. If the network diameter is large compared to the arbitration radius, sev-
eral winners with different bit sequences are possible. However, if the arbitration radius is
larger than or equal to the network diameter and if bit sequences are unique, there is only one
network-wide winner.

3.2.2 Derivation of Bit Round Durations

In the previous section, system ticks were assumed to indicate the beginning of bit rounds,
whereas their interval was not discussed further. A crucial prerequisite to guarantee ACTP’s
termination with fixed delays is that these system ticks occur periodically, thereby requiring a
constant bit round duration. This section now looks at this duration and provides its derivation
under consideration of synchronization inaccuracy and hardware limitations. We then show
that all influencing factors are either constant or bounded, thereby proving the foundation of
ACTP’s constant runtime and deterministic protocol behavior.

In a perfect world, the only relevant factor in a bit round’s duration dbitRound would be the
pure transmission duration of a black burst dbb. Yet in the real world, the following transceiver-
dependent factors have additionally to be taken into account:

• dmaxCCA: The maximal delay to detect the medium’s current state of occupation. It de-
pends on the CCA mode of the used wireless technology (see Sect. 2.3.2) and has to be
bounded and smaller than dbb to avoid false negatives. With TI’s CC 2420 transceiver, this
delay comprises eight symbol durations.

• dswitchRx: Delay to switch from transmission to reception mode. This transition is often
done automatically by the transceiver after a transmission is complete and usually has
constant delay, which also holds for TI’s CC 2420 transceiver.

• daccessRx: Duration to switch from transmission to reception mode plus delay to monitor
the medium’s current state. For TI’s CC 2420 transceiver, daccessRx is the sum of dswitchRx

and dmaxCCA.
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• dswitchTx: Delay to switch from reception to transmission mode, which is required be-
fore each transmission. This delay is usually constant, which is true for TI’s CC 2420
transceiver.

• dpause: Configurable additional duration to observe an idle medium in between subse-
quent black burst transmissions. This time also depends on the CCA mode. With energy
detectors, the duration has to be set equal or larger than the symbol duration. For reasons
of efficiency, dpause should be selected as small as possible.

From a performance perspective, transceivers with corresponding small delays are desirable.
This is, however, no prerequisite of ACTP, which only requires that these factors are either con-
stant or bounded. Example values for TI’s CC 2420 transceiver can be found in Appendix A.2.
If a scenario comprises different transceivers, the maxima of each factor have to be chosen for
the derivation of dbitRound. In addition to the transceiver-specific factors above, the following
delays influence the timing of ACTP as well:

• dmaxOffset: Synchronization inaccuracy, which distorts the synchronous start of bit rounds.
For the success of ACTP, it is important that the synchronization mechanism guarantees
a bounded offset.1

• dprop: Physical propagation delay of black bursts. Because this delay is very small for
small distances that are usually present in WSNs, it is neglected in the following.

• dexecution: Execution delay due to limitations of the processing unit. This delay can, for
instance, additionally defer the detection of a black burst or delay its transmission start.
Though this delay has to be taken into account in an implementation, it is ignored in the
following, since it is not ACTP-inherent.

After the introduction of relevant factors, the following analysis derives constraints that must
hold for the successful application of ACTP. These constraints are illustrated in Fig. 3.4 and
define the duration of a bit round dbitRound. Some of them are only required if the arbitration
radius is one hop; others only for larger arbitration radii. Though we mention the affected radii
for each constraint, we do not treat the cases separately. Instead, for simplicity, we demand the
validity of all constraints and derive a single definition of dbitRound.

Constraint 3.2.1. Necessary for all nhops.

The detection of black bursts sent by nodes in bit round 1≤ j ≤ nhops of bit phase 1≤ i ≤ nbits

must be associated to the same bit phase and bit round by all receiving stations.

By this constraint, it is assured that detected dominant bits are assigned to the correct position
in the bit sequence, which is necessary to guarantee that the node with the numerically greatest
sequence wins the contest. With arbitration radii larger than one, the constraint is additionally
mandatory to guarantee the propagation of dominant bits across the full nhops distance. To
fulfill this constraint, two cases have to be distinguished. They are illustrated in Fig. 3.4 for
multi-hop arbitration radii (nhops > 1). For nhops = 1, cases and implications are similar but
without distinction between bit phases and bit rounds.

1In full applications of ACTP in Chapter 4, the synchronization protocol BBS is adopted, whose synchronization
offset is again transceiver-dependent. However, BBS is not prescribed by ACTP and, thus, dmaxOffset is in the first
instance transceiver-independent.
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Figure 3.4: Constraints on the duration of a bit round.
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• Case 1 – Latest detection of black bursts: Due to synchronization inaccuracy, node Va starts
the black burst transmission in bit round j− 1 with a worst-case synchronization offset of
dmaxOffset. Node Vb detects this black burst with additional CCA delay of dmaxCCA. Though
Vb expects black bursts at tb

i,j−1, which is the locally perceived beginning of bit round j− 1,
it actually detects the black burst at ti,j−1,latest = tb

i,j−1 + dmaxOffset + dmaxCCA, yet it must still
assign the black burst to bit round j− 1 non-ambiguously.

• Case 2 – Earliest detection of black bursts: Node Va starts bit round j dmaxOffset earlier than
Vb and Vb detects the sent black burst immediately without CCA delay. Though this
detection event is at ti,j,earliest = tb

i,j − dmaxOffset and thereby earlier than expected, Vb must
assign the dominant bit to bit round j non-ambiguously.

Note that both cases cannot occur simultaneously, since dmaxOffset is the total upper offset
bound. Thus, Vb cannot be synchronized with an offset of +dmaxOffset to some node Va and
with −dmaxOffset offset to some other node V ′a . However, both cases must be taken into ac-
count, because a node does not know its current synchronization offsets to its neighbors. Thus,
(ti,j,earliest − ti,j−1,latest) ≥ dpause must hold to clearly assign the beginning of a black burst de-
tection to the correct bit round and bit phase. With tb

i,j = tb
i,j−1 + dbitRound, this results in the

following formal constraint for dbitRound:

dbitRound ≥ 2 · dmaxOffset + dmaxCCA + dpause (3.1)

Constraint 3.2.2. Necessary for all nhops.

Black bursts that are sent in two adjacent bit rounds must be detected as independent black bursts
by all receiving nodes.

By this constraint, we forbid that black bursts cause a single bit round-spanning busy tone
on the medium. This is required to enable the correct assignment of black burst detections
to bit phases/rounds and to filter false positives by means of the duration of medium occu-
pancies. The worst-case scenario, which threatens this constraint, is presented in Fig. 3.4 for
one-hop arbitration radius. For nhops > 1, a similar example can be devised with identical impli-
cations. With nhops = 1, the worst-case occurs if station Va sends two dominant bits in adjacent
bit phases, if a second station Vb sends a dominant bit with a temporal offset of dmaxOffset, and
if the detection of the end of Vb’s transmission is additionally deferred by the maximal CCA
delay. Formally, these conditions yield the following constraint:

dbitRound ≥ dmaxOffset + dbb + dmaxCCA + dpause (3.2)

Constraint 3.2.3. Necessary for nhops = 1.

An active node must be able to transmit consecutive dominant bits in subsequent bit phases.

This constraint is illustrated in Fig. 3.4 under the assumption that the transceiver’s transition
from transmission to reception mode cannot be interrupted and has to be finished before a new
transmission can start. In this case, the constraint yields the following inequality:

dbitRound ≥ dbb + dswitchRx + dswitchTx (3.3)
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However, measurements with TI’s CC 2420 transceiver revealed that – in contradiction to the
data sheet [Tex07] – the transition from transmission to reception mode is interruptible [Eng13].
In this case, dswitchRx can be omitted in the formula. Vice versa, switching from reception to
transmission mode is always necessary, thereby prohibiting optimizations to omit dswitchTx.

Constraint 3.2.4. Necessary for nhops ≤ 2.

A node transmitting a black burst must be able to detect a black burst in the next bit round.

This constraint covers two scenarios: First, in case of nhops = 1, the constraint must hold for
active nodes, which must always detect black bursts when sending recessively; even if they
sent a black burst in the previous bit phase. This case is illustrated in Fig. 3.4, where Vb is
the node sending recessively in bit phase i + 1. Second, this constraint must be fulfilled with
nhops = 2 for passive stations forwarding a dominant bit in the last bit round of a bit phase, since
they may have active neighbors sending dominantly in the first bit round of the subsequent bit
phase. For both scenarios, the resulting formal constraint is as follows:

dbitRound ≥ dmaxOffset + dbb + daccessRx (3.4)

Constraint 3.2.5. Necessary for nhops > 1.

A passive station detecting a black burst in bit round j < nhops must be able to forward the black
burst in bit round j + 1.

The worst-case for this constraint is illustrated in Fig. 3.4 and occurs if the repeating node
(Vb) perceives the start of bit round j dmaxOffset earlier than the sender of the first black burst
(Va) and if the detection of the black burst’s end is delayed by the maximal CCA delay. Taking
additionally the switching delay into account, this constraint is formally expressed as follows:

dbitRound ≥ dmaxOffset + dbb + dmaxCCA + dswitchTx (3.5)

To get the aggregated and smallest possible duration of bit rounds, the maximum of all con-
straints has to be determined:

dbitRound = max{2 · dmaxOffset + dmaxCCA + dpause,

dmaxOffset + dbb + dmaxCCA + dpause,

dbb + dswitchRx + dswitchTx,

dmaxOffset + dbb + daccessRx,

dmaxOffset + dbb + dmaxCCA + dswitchTx} (3.6)

Starting from dbitRound, the derivation of bit phase duration and ACTP phase duration is
straightforward:

dbitPhase = nhops · dbitRound (3.7)

dactp = nbits · dbitPhase = nbits · nhops · dbitRound (3.8)

To obtain concrete values of dbitRound, dbitPhase, and dactp, scenario- and transceiver-specific
properties like arbitration radius, bit sequence length, and switching delays have to be inserted
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Figure 3.5: Exemplary values of dbitRound and its defining constraints.

into Equations 3.6, 3.7, and 3.8. Example values of dbitRound and its defining constraints are
plotted in Fig. 3.5 as function of the resynchronization interval, which controls the nodes’ max-
imal offset dmaxOffset. The values are calculated with TI’s CC 2420 transceiver and under the
assumption of synchronization with the master-based variant of BBS. Because all parameters
of dbitRound, dbitPhase, and dactp are constant (like switching delays) or pre-configured (like arbitra-
tion radius), the runtime of ACTP can be calculated in advance.2 Together with its predictable
mode of operation, this turns ACTP into a deterministic protocol.

3.3 Network-wide Application of ACTP

Due to its configurable application range, ACTP can also be applied network-wide. In this case,
it is sufficient to estimate the network’s diameter by an upper bound that is assigned to nhops.
For reasons of efficiency, this bound should be as tight as possible. In the following, we assume
that nmaxHops is such an upper bound and set nhops = nmaxHops. In the next subsection, we first
show ACTP’s network-wide application by means of an example. Afterwards, positive side
effects of such an application are discussed.

3.3.1 Example

Figure 3.6 illustrates the protocol’s mode of operation in a multi-hop network with nhops =

nmaxHops = 4 and with arbitration sequences of length nbits = 3. At the beginning of the ACTP
phase at t0, stations Vb, Vd, Ve, and Vf hold bit sequences and are therefore active, while Va and
Vc act as repeaters. Because their first bit is dominant, all active nodes transmit a black burst
in the first bit round of the first bit phase. These black bursts are received by Va and Vc, and
forwarded in the second bit round. Since all stations are already aware of the dominant bit after
the first bit round, the forwarding by nodes Va and Vc would actually not be necessary. This
information is, however, not available without global knowledge, thereby making forwarding

2Note that the runtime is, in particular, independent of the number of participating nodes.
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Figure 3.6: Network-wide application of ACTP in a network with 4 hops diameter.

mandatory. For similar reasons, all stations must wait the third and fourth bit round of this bit
phase, though there is no further transmission.

At t1, the second bit phase starts, in which only Vd and Ve send dominant bits in the first
bit round. After detecting this bit, Vb and Vf become passive. Together with Vc, they act as
repeaters and forward black bursts in the second bit round. Va, in turn, forwards a dominant
bit in the third bit round, though it would again not be necessary in the given scenario.

When the third bit phase starts at t2, only Vd and Ve are active and transmit the third bit of
their arbitration sequence. Because this bit is recessive for Ve, Ve remains silent and listens for
dominant bits. Vd’s dominant bit is, on the other hand, repeated by Vb, Va, and Vc in the second,
third, and fourth bit round, respectively, when it is finally detected by Ve and Vf . Thus, all four
bit rounds are required in this bit phase to propagate Vd’s dominant bit network-wide.

3.3.2 Implicitly Available Information

Running ACTP with network-wide arbitration radius and unique bit sequences achieves a
network-wide arbitration with a single winner node. As further result, all nodes are aware of
the winner’s arbitration sequence, since it was present on the medium. For some applications
of ACTP, retrieving the winner’s sequence is a useful extra and enables the collision-protected
transfer of small payload (see also further applications of ACTP in Chapter 4).

Because Constraint 3.2.1 demands the unique assignment of detected black bursts to bit
rounds, all nodes can furthermore deduce their distance to the winning node in “sensing hops”.
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This distance corresponds to the bit round number of the last detected dominant bit, since this
bit has its single origin at the winner. In the example of the previous section, for instance, node
Vf detects the last dominant bit in the fourth bit round. Thus, it knows that the winner node is
four hops away, though it does neither know the full path to the winner nor its id.

Applying ACTP with non-unique priorities, i.e., with assigning the same arbitration se-
quences to multiple nodes, does not guarantee a single winner, yet the network-wide aware-
ness of the winner(s) bit sequence is preserved. Furthermore, nodes can also still deduce the
distance to the nearest winner(s) from the detection of the last dominant bit. The number of
winners or distances to other winners can, however, not be determined.

3.4 Cooperative Transfer with ACTP

The term Cooperative in ACTP suggests that the protocol is not only applicable to arbitrations
but also to (cooperative) data transfer. This operation mode of ACTP does not differ from its
application to arbitration, but the usage is different: Instead of allowing stations with different
bit sequences, cooperative transfer requires only one active node at the beginning of an ACTP
phase.3 The bit sequence of this node is then propagated across the arbitration radius and
becomes common knowledge of the network if the radius satisfies the network diameter.

Compared to the dissemination of information with regular data transfers, the black burst-
based propagation of information guarantees a constant transfer delay that is independent of
the number of network nodes. Thus, ACTP provides an efficient and low-overhead method to
distribute small pieces of information in dense networks. Useful applications are, for instance,
the signaling of network mode changes and the network-wide distribution of time values. More
details on example applications are given in Chapter 4.

3.5 Restricted Application of ACTP

Running ACTP with an arbitration radius nhops < nmaxHops is called restricted application of ACTP.
With this configuration, ACTP still guarantees that a winning node is the only winner within
its nhops neighborhood as long as bit sequences are unique. Advantages of restricted applica-
tions w.r.t. arbitration are the increase of the number of winning nodes without violating the
protocol’s deterministic behavior and better utilization of network and energy resources by
improving spatial reuse. With nhops = 2, for instance, and under the assumption of equal trans-
mission ranges of black bursts and regular data frames, restricted applications of ACTP handle
the hidden station problem in a deterministic way.

Though the restricted application of ACTP enables multiple winners, there is no guarantee
that the number of winners is maximal. There can, in particular, be situations, in which a node
loses during an ACTP phase but has no winner in its nhops-hop neighborhood when the protocol
terminates. There can also be cases, in which a node wins, though other nodes in its nhops-hop
neighborhood had numerically greater arbitration sequences. These phenomenons have also
been observed in previous works [YYH03b, PATR07a], where they are summarized as multi-
hop competing problem. They are illustrated in Fig. 3.7: In Fig. 3.7(a), bit sequences are assigned

3Alternatively, there can be multiple active nodes as long as they send identical bit sequences.
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(a) Less winners than possible [YYH03b].
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(b) Winners despite neighbors with greater bit se-
quences.

Figure 3.7: Multi-hop competing anomalies in a network with nmaxHops = 4 and nhops = 1.

such that there is only one winner, though ACTP’s parameters (nmaxHops = 4 and nhops = 1)
allow up to three winners. Figure 3.7(b) presents the second anomaly, where in addition to Va,
two nodes (Vc and Ve) win, though their direct neighbors have numerically greater sequences.
In general, the number of winners depends on the arbitration radius, the network diameter,
and the length of bit sequences and their assignment to network nodes. Independent of these
parameters, ACTP guarantees that at least one winner arises if at least one node is initially
active.

A drawback of restricted applications of ACTP is regarding the validity of detected bit se-
quences. Since nodes could have monitored so-called phantom frames [BBCG11], which are bit
sequences that are actually not sent by any node, they can no longer retrieve reliable infor-
mation from detected bit sequences. Figure 3.8 illustrates this anomaly with two examples.
Both examples show the same network with two hops diameter but different assignment of
arbitration sequences. In both examples, ACTP runs with nhops = 1. In Fig. 3.8(a), arbitration
sequences are assigned such that Vc only detects the prefix of Vb’s bit sequence, since Vb loses
against Va in the second bit phase. Bit sequences in Fig. 3.8(b) produce two winners (Va and
Vc). Because both nodes send their bit sequence completely, Vb observes the OR combination
of both. In larger scenarios, nodes may – in addition to detecting prefixes only or results of OR
operations – also detect a combination of both types of distortions.

While a detected bit sequence does no longer provide reliable information, it is sometimes
sufficient to know whether there is at least one winning node within a node’s nhops-hop neigh-
borhood. This can be achieved by suffixing bit sequences with a dominant End-of-Frame (EOF)
bit, which is evaluated by passive nodes to determine two pieces of information: First, the node
can conclude that there is no winner in nhops range if the detected EOF bit is recessive (like for
node Vc in Fig. 3.8(a)). Otherwise, there is at least one winner within the arbitration radius.
Second, if the EOF bit is actually dominant, it can derive the distance in hops to (one of) the
nearest winners, which is equal to the bit round number in which the EOF bit is detected.

Va VcVb

B
TX: 111
RX: 111 B

TX: 101
RX: 111

TX: 010
RX: 100

(a) Reception of a bit sequence prefix.

Va VcVb

B
TX: 101
RX: 101 B

TX: 010
RX: 010

TX: 001
RX: 111

(b) Reception of the OR of two bit se-
quences.

Figure 3.8: Distortion of detected bit sequences with nmaxHops = 2 and nhops = 1.
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Though the detection of bit sequences can be distorted when nodes compete with restricted
arbitration radius and different bit sequences, cooperative data transfer is still applicable. By
ensuring that no node participates with a different bit sequence, ACTP still provides the reliable
propagation of information over nhops hops and with bounded delay.

3.6 Errors and Countermeasures

Up to now, ACTP has been introduced under the assumption of symmetrical links and a valid
single-network property. In this section, we discuss implications if this assumption does not
apply (Sect. 3.6.1). Furthermore, measures w.r.t. error control are presented (Sect. 3.6.2).

3.6.1 Violation of the Single-Network Property

The single-network property is introduced in Sect. 2.2.3 and consists of two parts: The first
part prohibits all sources of interference that may cause the detection of false positives and
threaten the correctness of ACTP. In general, this part of the property must fully apply. In some
situations, however, tuning the CCA threshold can fade out interference if it is weaker than the
signal strength of valid black bursts.

The second part of the property requires a stable path of symmetrical (communication) links
between all pairs of nodes. If ACTP is applied network-wide, link symmetry is actually not nec-
essary. Instead, it is sufficient that all node pairs are connected via some path of links with at
most nhops = nmaxHops hops length. Yet, some implicitly available information like the distance
to the winning node in hops becomes inaccurate with asymmetrical links. Running ACTP with
nhops < nmaxHops requires a more careful consideration of results if links can be asymmetrical,
since nodes can eliminate other nodes with numerically larger bit sequences due to asymmet-
rical distances. This phenomenon is illustrated in Fig. 3.9, where Va’s second bit defeats Vc.

Because results are less predictable with asymmetrical links, link symmetry is – in particular,
with restricted applications of ACTP – desirable. Regarding the probability of asymmetrical
(communication) links, contradictory results can be found in the literature: [GKW+02], for
instance, reports that 5-15% of all links are asymmetrical, whereas [CM10, CMS10] present ex-
periments with a high correlation between the RSS at both sides of a link and conclude that
link symmetry is a valid assumption in homogeneous WSNs. A possible explanation for the
deviating results are the different environments and transceivers (RFM’s TR1000 [RFM12] vs.
TI’s CC 2420 [Tex07]), which differ in transfer rate, modulation, and frequency band. As a con-
clusion, link symmetry should not be presumed implicitly but checked a priori and specifically
for the used hardware platform and environment.

Va Vc

B
TX: 00
RX: 11 Vb

B
TX: 01
RX: 01 B

TX: 10
RX: 11

Figure 3.9: Va defeats Vc despite lower priority due to link asymmetry (nhops = 1, nmaxHops = 2).
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However, not link asymmetry but link instability is a bigger threat to ACTP, since it can
lead to undesired and confusing results w.r.t. winnings nodes and detected bit sequences. It
is particularly possible that two nodes with different priorities win the contest, though they
are temporarily within arbitration radius of each other. Hence, unstable links must be avoided
entirely, which can be achieved by a controlled node placement.

3.6.2 Error Control and Redundancy

If false positives or negatives cannot be excluded, countermeasures become necessary to de-
tect – and ideally correct – them. In communication systems, two general approaches of error
control are distinguished [ASSC02]: Automatic Repeat reQuest (ARQ), where the receiver sends
feedback to the sender after the end of the transmission to inform about success or to trigger
retransmissions [WMW05], and Forward Error Control (FEC), which adds redundancy to trans-
missions to enable error correction by receivers [WMW05]. In the following, the incorporation
of both schemes into ACTP is discussed.

3.6.2.1 ARQ – Automatic Repeat reQuest

Though incorporating ARQ into ACTP is in general possible, it can only be applied with
network-wide arbitration radius, since otherwise, different bit sequences may overlap at pas-
sive nodes and cause the detection of “valid” dominant and recessive bits in the same bit round.
Because dominant bits overrule recessive ones, passive nodes could accordingly not acknowl-
edge the detection of recessive bits. If ACTP is executed with network-wide arbitration radius,
error control with ARQ is more compatible. In this case, checksums can be appended to bit se-
quences, which enable passive nodes to check the correctness of a received bit sequence. Since
several nodes may receive a bit sequence incorrectly and the notification about a transmis-
sion error must be sent network-wide as well, notifications have to be encoded in a collision-
protected way. This can be achieved by running ACTP again with nhops = nmaxHops and a single
bit that is set dominantly if the checksum does not match (NAK (Negative Acknowledgment))
and recessively otherwise (ACK (Acknowledgment)).4 Thus, retransmissions are required if at
least one node sends a dominant bit during the transmission of ACK/NAK.

3.6.2.2 FEC – Forward Error Control

A jeopardy of ARQ is that a single false positive/negative during the transmission of the (neg-
ative) acknowledgment can lead to an inconsistent network state, where some nodes start re-
transmissions and others not. Therefore, FEC, which is, for instance, applied by IEEE 802.15.1
Bluetooth [IEE05], is a better solution to improve ACTP’s robustness against detection faults.
In this regard, an obvious way to add redundancy is the repetition of bits – either bit-wise or
sequence-wise –, where the number of repetitions serves as regulation screw: If bits are re-
peated once, only error detection but no correction is possible. If otherwise the number of
repetitions is higher, a majority decision can be applied to correct errors.

A higher robustness is achieved if repetitions are bit-wise, where bit rounds are subdivided
into several repetition rounds. The reason why bit level repetition should be preferred to se-

4See also Sect. 4.3.4 about the application of ACTP to acknowledgments.
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quence level repetition is the competitive character of ACTP: If repetition is sequence-wise
and, for instance, with two repetitions (i.e., the sequence is sent three times), two false nega-
tives/positives in different repetitions can lead to three different winner sequences, where the
actually correct winner completes its bit sequence only once. If, however, repetition is on bit
level, majority decisions are bit-wise and the result of the ACTP run stays correct except if two
errors occur in two repetition rounds of the same bit round.

3.7 Realization of ACTP

There are in total three realizations of ACTP: An SDL [Int12c] specification and two manual
implementations for the Imote 2 platform [MEMara], which are the result of student projects.
ACTP’s SDL specification (Sect. 3.7.1) was applied in simulative evaluations with the simulator
PartsSim [BGK08]. The first manual implementation is stand-alone (Sect. 3.7.2.1); the second
one a protocol of the Black burst-integrated Protocol Stack (BiPS) [Eng13] (Sect. 3.7.2.2). They serve
as proof-of-concept of the practical feasibility of black bursts and ACTP.

3.7.1 SDL Specification of ACTP

ACTP’s SDL specification is part of MacZ [BGK07], a MAC layer for wireless ad-hoc networks
with QoS support. Parts of MacZ and an excerpt of the specification of ACTP are shown in
Fig. 3.10. Though tool chains exist to automatically transform SDL specifications into imple-
mentations for the Imote 2 platform (see Part II of this thesis), the main objective of the spec-
ification is ACTP’s usage in performance simulations with PartsSim [BGK08]. As trials have
shown, the specification can actually not be transformed into implementations automatically
due to efficiency reasons and a too large overhead that is caused by the specification of MacZ.

The SDL specification shows ACTP in the context of an application. The required synchro-
nization is accomplished by block Synch containing a specification of BBS [GK11a]. To send/de-
tect black bursts, block BlackBurstCoDec is utilized, which monitors medium occupancies by
the CCA information of the transceiver.

The behavior of ACTP is specified in the corresponding process, which is shown in the center
and with two transitions exemplarily. To decouple applications, the ACTP process is supported
by processes Ctrl and Queue, where Ctrl is responsible for the timely and synchronous start
of ACTP and Queue stores bit sequences of upcoming ACTP runs. Shortly before a run of
ACTP starts, Ctrl informs ACTP by signal announce about the ID of the upcoming ACTP run.
Thereupon, ACTP requests the corresponding bit sequence from Queue. The actual start of ACTP
is triggered by process Ctrl with the SDL signal enable, whose consuming transition is given
in the figure: If the node is active – i.e., if it holds a bit sequence to transmit – and the first bit
dominant, a black burst transmission is triggered. Otherwise, the protocol waits for a black
burst detection. The reaction to such a detection is illustrated in the second example transition,
where an active node is turned into a passive node (if not already occurred before) and the
dominant bit is stored in the received bit sequence. Afterwards, the node waits for the end of
the bit round, either to forward the dominant bit (if there is still a bit round left in this bit phase)
or to await the end of the bit phase.
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Ctrl

System ActpTest   /* simplified excerpt */

BlackBurstEncode BlackBurstDecode

Block Type BlackBurstCoDec

Block Application

Block Synch

Block Type ACTP

Queue

Process ACTP

[schedule] [txBitSequence]

[rxBitSequence]

[Tick]
[announce, enable] [bitSequence]

[txBB]

[rxBB]

[requestBitSequence]

[tx]

[cca]

sensing

rxBB

idle

enable(ts)

txSequence = ''B;

true

false

rxSequence := ''B;
round := 1;
phase := 1;
nextRound := ts + dBitRound;
SET(nextRound, roundT);

role := REPEATER; role := TRANSMITTER;

txSequence(phase-1) = 1

true

false

txBB

role := REPEATER;
rxSequence := rxSequence//'1'B;

nHops >  round
true

false

waitingsensing

rxSequence := rxSequence//'1'B;

waitingrepeating

Timer roundT;

DCL ts Time;
DCL nextRound Time;
DCL dBitRound Duration;
DCL nHops Integer;
DCL round Integer;
DCL phase Integer;
DCL role ROLES;
DCL rxSequence Bit_string;
DCL txSequence Bit_string;

Newtype Roles
   Literals 
          TRANSMITTER,
          REPEATER;
EndNewtype;

[txBB]

[rxBB]

Figure 3.10: Excerpt of the SDL specification of ACTP in MacZ.
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3.7.2 Hand-written Implementations for the Imote 2 Platform

Both manual ACTP implementations are bare, i.e., they do not rely on an operating system.
Thus, they have full control over hardware and interrupts, which helps to minimize delays
and enables the deactivation of undesired hardware interrupts during time-critical intervals.
The underlying hardware platform is an Imote 2 [MEMara], which is a platform for WSNs and
equipped with TI’s CC 2420 transceiver [Tex07]. More details on the Imote 2 and the CC 2420
transceiver can be found in Appendix A. As sketched during the introduction of black bursts
in Sect. 2.3.1, we realize black bursts by irregular MAC frames of minimal length. To detect
them on the medium, hardware interrupts are utilized, that are triggered by changes of the
transceiver’s CCA output pin, which is interconnected to a GPIO pin of the microcontroller. In
both implementation variants, the required synchronization is accomplished by BBS.

3.7.2.1 Stand-alone Implementation of ACTP

ACTP’s first implementation variant is part of a test framework, whose objective is the evalua-
tion of black burst-based protocols. The framework’s use in comprehensive scenarios is not in
the focus. An excerpt of the implementation’s interface and the interplay with applications and
BBS is given by Fig. 3.11.5 An Application, which is going to run ACTP, registers the start time
of the ACTP phase, which is relative to synchronization ticks, and its priority (i.e., the arbitra-
tion sequence) at the ACTP component. It furthermore provides a callback, which is invoked
after the end of the ACTP phase, to receive the result of the protocol’s run. The ACTP com-
ponent, in turn, registers a callback at BBS to get notified about synchronization ticks that are
afterwards utilized to schedule starts of ACTP phases. Thereupon, bit rounds and bit phases
are scheduled relative to the start of ACTP phases. To detect dominant bits, ACTP registers a
further callback at the BlackBurst component, which senses the medium for black bursts and
provides an interface for black burst-encoded bit transmissions.

Application

+register(priority : uint32_t, offset : uint32_t, cb : ACTP_CB_TYPE)
-setupTimer(ts : TimeValue)
-bitRound()
-bitPhase()
-bb_received(bb : BB_RX_FRAME)

ACTP

+subscribe4Event(cb : BB_CB_TYPE, type : EVENT_TYPE)
+send(dominant : bool)

BlackBurst

+subscribe4Tick(cb : TICK_CB_TYPE)

BBS

1

1

*

1

1

1

Figure 3.11: Architecture of the first implementation variant of ACTP.

5Technically, the implementation is in C. The illustration as class diagram is for visualization only.
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3.7.2.2 Integration of ACTP into BiPS

The second implementation variant is part of BiPS, a protocol framework for Imote 2 nodes.
The framework itself and the incorporation of BBS are results of a student’s thesis [Eng13].
A derivation and validation of BBS timing constraints in the context of BiPS can be found in
[ECG14]. Over the last years, BiPS has been extended continuously with several MAC pro-
tocols and basic Operation System (OS) functionalities in student projects6 and projects with
industrial partners7. Currently, it includes four MAC protocols: Contention-Based MAC (short:
CB; CSMA/CA-based), Reservation-Based MAC (short RB; TDMA-based), ACTP, and a MAC
protocol for Mode-Based communication [BGK14] (short MB). The OS functionalities of BiPS
comprise drivers for peripheral devices, timers, a scheduling hierarchy, and an application
interface to decouple time-critical protocols like BBS and ACTP from applications and higher-
layer protocols with less stringent time constraints. Different from its stand-alone implementa-
tion, ACTP’s integration into BiPS enables applications in larger scenarios and in combination
with other MAC protocols. It also reduces the “burden” of the implementation, since many
functionalities like the scheduling of the start of an ACTP phase and the queueing of upcoming
transmissions are provided by the BiPS framework.

The architecture of BiPS is shown in Fig. 3.12 in interrelation with higher-layer protocols
and applications. It follows a layered approach to enable abstractions from technical details
of lower layers. Thereby, higher layers can mostly be implemented in a platform-independent
way. The lowest layer in the architecture provides system software and interfaces to access
hardware subsystems like hardware timers and DMA (Direct Memory Access). It is used by
layer 1, which contains hardware drivers for peripheral devices like the CC 2420 transceiver.
Layer 2 comprises all MAC protocols, the synchronization protocol BBS, and a multiplexer to
access them. Black burst-related functionalities, which are required by both BBS and ACTP,
are encapsulated in a separate component. Higher layers – e.g., scenario-specific applications
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Figure 3.12: Architecture of BiPS [Eng13].

6Besides smaller projects, the following bachelor and master theses cover extensions of BiPS or the framework’s
interface to higher-layer protocols: [Eng13, Kra13a, Kra14, Mat14].

7BiPS is used in the joint project “Softwareinnovationen für das digitale Unternehmen” (SINNODIUM) of the
Software-Cluster (http://www.software-cluster.com/) and is running in the demonstrator “Vertikale Integration
von Produktionsprozessen” (VI-P), which is located at the SmartFactoryKL (http://www.smartfactory-kl.de/).

http://www.software-cluster.com/
http://www.smartfactory-kl.de/
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Figure 3.13: Transmission opportunities: Homogeneous protocol interface of BiPS.

or routing protocols – are not part of BiPS but use it as a service. They can be implemented
manually or model-driven with SDL [BCGM14].

The execution of BiPS is controlled by two schedulers: The BiPS Application Scheduler (BAS)
is responsible for executing non-time-critical parts, which are usually components in layer 3
and 4. Because BAS is irrelevant w.r.t. ACTP, it is not further described here. Time-critical pro-
tocols of BiPS like ACTP are scheduled and dispatched by the BiPS Communication Scheduler
(BCS), which runs in interrupt context and has priority over BAS. The main tasks of BCS are
the slotting of time and the timely (de-)activation of MAC protocols, which must occur syn-
chronously among all communicating nodes. To build time slots, BCS subdivides time into
so-called macro slots, where each macro slot starts with the application of BBS. MAC protocols
run in so-called virtual slot regions, which are placed relatively to synchronization ticks of BBS
within a macro slot and are associated with a single MAC protocol (e.g., ACTP). In parts of a
macro slot without virtual slot region, the transceiver is put into an energy saving state. During
a virtual slot region, BCS is responsible for the timely activation of the associated MAC protocol
and for the protocol’s deactivation at the region’s end. The concrete types and placement of vir-
tual slot regions are scenario-specific and defined by configuration. To improve the flexibility
of placing virtual slot regions, macro slots can be grouped to build so-called super slots.

The data interface of BiPS is realized by the multiplexer, which provides a homogeneous
interface to all MAC protocols and consists of so-called Transmission Opportunities (TOs). TOs
are identified by unique IDs and are either designed for transmissions (TX TOs) or receptions
(RX TOs). Their main objective is to temporally decouple higher-layer protocols from time-
critical functionalities of BiPS. An example of the interplay between TX TOs, RX TOs, applica-
tions, and virtual slot regions is given in Fig. 3.13 and has the following properties: A TX TO is
associated with one or more virtual slot regions. It holds a queue – either ordered by FIFO or
deadlines – to store upcoming transmissions and transfers them to the responsible MAC pro-
tocol at the start of an associated slot region. After being informed about success or failure of
a transmission by the MAC protocol, the TX TO passes this information to the initiator of the
transmission and deletes the transmission request from its queue. If a transmission failed, it
can optionally keep the transmission request in its queue and trigger retransmissions. Because
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loop

alt

cc2420black burstACTPBCSmultiplexerapplication

8.1: txCallback(FAILURE)

9.1: rxCallback(data)

8: txCallback(FAILURE)

9: rxCallback(data)

7.1: rxCallback()
7: CCA()

6.1: TX()6: sendBB()

5: start()

4.1: setData(data)

2: setMode(RX);

3.1.1: init()
3.1: activate(config)

3: config(config)

4: config(region)

1: enqueue(data, toId)

Figure 3.14: Example of an ACTP run in a virtual slot region of BiPS.

a virtual slot region can be associated with more than one TX TO, priorities are introduced to
guarantee unambiguous transmission orders. Similar to TX TOs, RX TOs are also associated
with one or more virtual slot regions. Frames received during a slot region are delivered by
the active MAC protocol to the associated RX TO and forwarded to applications, which have to
register at the RX TO in advance.

By means of a sequence diagram, Fig. 3.14 presents an example of an ACTP run in BiPS. At
any time, an application enqueues a transmission request containing the arbitration sequence
to transmit into a TX TO of the multiplexer. To send the sequence with ACTP, this TX TO must
be associated with a virtual slot region of type ACTP. Shortly before the beginning of the slot
region, BCS triggers the activation of the CC 2420 transceiver to guarantee its operational readi-
ness. When the slot region actually starts, BCS activates ACTP, which, in turn, prepares for
black burst transmissions and detections, and orders the multiplexer to provide the data of
the next transmission. Shortly after the start of the virtual slot region8, BCS triggers ACTP to
start its execution, i.e., to process its bit sequence. After the protocol terminates, ACTP invokes
two callbacks: The fist callback informs about the result of the ACTP run that is assumed to
be FAILURE in the example. The second callback delivers the detected bit sequence, which has
outperformed the own sequence, to the multiplexer, where it is forwarded to the application.

8This delay pays tribute to synchronization offset and is derived from dmaxOffset. Only after this delay, a MAC
protocol is allowed to occupy the medium.
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3.8 Discussion

State-of-the-practice medium access schemes for wireless systems can roughly be divided into
two groups: Either contention-based with probabilistic chances of success, or reservation-based
with bounded medium access delays but significant lead time and/or offline configuration.
With ACTP, this chapter introduces a binary countdown protocol for wireless multi-hop net-
works that complements this list of access schemes. The protocol is fully distributed and im-
plementable with customary transceivers. Due to deterministic and value-based elimination
of contest, ACTP is well-suited in situations, in which a single node has to be elected dynam-
ically but within fixed time bounds. Different from existing deterministic protocols based on
TDMA or FDMA, nodes running ACTP do not require transmission schedules or knowledge
about their neighborhood. Thereby, ACTP comes with very low storage requirements and is
highly robust against topology changes. The advantages of ACTP’s value-based and determin-
istic arbitration are, in particular, visible if nodes have seldom and sporadic communication
demands. Here, TDMA-based solutions usually waste network resources due to overbooking.
With ACTP, on the other hand, medium access can be granted when needed.

Though these examples show that ACTP has its strengths, it is no replacement of existing
schemes. If, for instance, no guarantees are required, CSMA/CA-based protocols state a suit-
able solution with very low overhead and less requirements w.r.t. synchronization. If, on the
other hand, guarantees are required but message schedules are fixed, periodical, and long-
lasting, TDMA-based protocols are more adequate than ACTP w.r.t. access delay, overhead,
and duty cycling9.

In addition to presenting ACTP’s mode of operation, this chapter also derives the duration
of bit rounds, which represent the time that is required to propagate a single bit along one hop.
In this regard, it is shown that influencing delays are constant or bounded and only depend on
transceiver-specific properties, the maximal synchronization offset, and configurable protocol
parameters like the length of bit sequences. Since all influencing factors are independent of the
number of competing nodes, ACTP is well-suited for networks with high node density.

Besides its application with network-wide arbitration radius, the chapter furthermore pre-
sents restricted applications of ACTP that provide, for instance, a deterministic solution to the
hidden station problem. Though restricted applications still ensure deterministic elimination of
contest, they cannot maximize the number of winners due to the multi-hop competing problem.
An additional side effect of ACTP results from its collision-protected encoding of bits, which
enables cooperative data transfers in order to propagate small pieces of information with fixed
transfer delays. Thereby, ACTP becomes open to further application scenarios like (network-
wide) signaling.

Because ACTP utilizes black bursts, which encode recessive bits by the absence of transmis-
sions, it is not distinguishable whether “there is no active node within arbitration radius” or
“all active nodes are sending recessively”. To avoid such situations, one solution is the prefix-
ing of each bit sequence with a dominant Start-of-Frame (SoF) bit. Thus, after the first bit phase,
passive nodes are aware whether there are active nodes and can switch off their transceivers if
this is not the case.

9As shown in [CGKW10, CGKW13], reservation-based protocols with exclusive medium access achieve a very
high energy efficiency compared to any contention-based protocol.
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Due to the interpretation of medium occupancies, the biggest threat of ACTP – and black
bursts in general – are external interferences, which can be caused by engines incidentally or by
neighbored networks negligently. In this regard, ACTP is notably more susceptible than state-
of-the-practice transmission techniques, where measures like spreading codes can be applied
to improve their robustness. To ensure ACTP’s correct mode of operation, interference sources
have to be prohibited. The same holds for unstable links, which must not occur during an
ACTP run but are acceptable between runs. Asymmetric links are tolerable in principle but
have undesired side effects and should, therefore, also be avoided with restricted applications
of ACTP. In general, these preconditions can be established by a controlled node deployment
and predetermined frequency allocations.





4. CHAPTER

Applications of ACTP
Due to its capabilities for deterministic medium arbitration and data propagation, ACTP pro-
vides solutions to a wide range of problems of distributed systems. In the following, solutions
to some general as well as control system-related problems are outlined exemplarily. Among
others, these solutions comprise complete communication systems with integrated synchro-
nization protocol and regular data transmissions. Since one of ACTP’s main application do-
main are WSNs, energy consumption is a further topic that is addressed in the course of this
chapter. In this regard, ACTP’s compliance with duty cycling, which is not self-evident for
wireless binary countdown protocols as substantiated by the presentation of related work in
Chapter 6, is discussed.

The remainder of this chapter is subdivided into five sections: Section 4.1 discusses the com-
bination of ACTP with synchronization protocols and duty cycling. In Sect. 4.2, applications of
ACTP are presented, in which the protocol is used for arbitration. Afterwards, Sect. 4.3 outlines
ACTP’s application to cooperative data propagation and distributed agreements on common
values. Thereafter, the utilization of ACTP in the context of a QoS routing protocol is sketched
in Sect. 4.4. Finally, Sect. 4.5 concludes this chapter.

Contents of this chapter have been published in [3], [9], [14], [16], [20], and [22].

4.1 Motivation

One of the first tasks when running some binary countdown protocol is the establishment of
synchronization. In this section, corresponding alternatives are presented together with their
pros and cons. Furthermore, the impact of resynchronization intervals is discussed.

4.1.1 Synchronization Alternatives

In wired single-hop topologies like bus topologies for CAN [Int04], synchronization is avail-
able implicitly, since start and end of transmissions are observed directly by all nodes that are
connected to the medium. Thereby, dominant SoF bits can be introduced to integrate syn-
chronization into a binary countdown protocol inherently. In wireless single-hop networks,
this mode of operation can in principal be adopted, and there are indeed instances of wire-
less binary countdown protocols like in [Kuh09, PAT07], which perform this kind of on demand
synchronization by prefixing bit sequences with SoF bits and by synchronizing to the earliest
detected SoF bit. However, such ad-hoc synchronizations have several drawbacks: First, ad-
ditional overhead is introduced by SoF bits in each run of the protocol and nodes possibly get
synchronized more often than needed, which particularly holds if the protocol runs with high
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frequency. Second, spontaneous synchronization is not compliant with duty cycling, because
SoF bits can in principle be sent at any time and nodes can therefore not put their transceivers
into an energy saving state.

In the literature (e.g., [PATR07a]), there are also binary countdown protocols for multi-hop
networks with SoF-based synchronization. They are based on the flooding of dominant bits
through the network and reveal further drawbacks of this kind of synchronization. One of them
is caused by concurrent but time-shifted starts of SoF bit transmissions, requiring additional
measures and guard times to merge SoF bits. Another drawback is w.r.t. termination, because
a node receiving an SoF bit does not know the previous itinerary of the bit and consequently
must always propagate the bit one hop further. Thereby, the propagation of SoF bits terminates
not until the entire network is synchronized, though the actual application range of the binary
countdown protocol may be much smaller and is, for instance, only two hops in [PAT07].

Instead of inherently integrating synchronization into the behavior of the binary countdown
protocol, it is more efficient to separate the synchronization. In this regard, external synchro-
nization, where nodes receive synchronization messages from an external reference clock, as
well as internal synchronization, where synchronization messages are exchanged among net-
work nodes, are possible. A famous and often adopted external synchronization solution for
wireless networks is via the Global Positioning System (GPS; [US 08]), which provides syn-
chronization with bounded offset. A representative of an internal synchronization protocol
with bounded offset is Black Burst Synchronization (BBS; [GK11b, GK11a]). While synchro-
nization offset is very small with GPS, BBS has the advantage that it comes without additional
hardware and less power requirements, and can also be applied indoor.

Though every synchronization method with bounded maximal offset can be used to accom-
plish the required synchronization of ACTP, we argue for an internal solution with BBS. This
solution is also implemented in the protocol framework BiPS (see Sect. 3.7.2.2). Originally, BBS
establishes tick synchronization that is less strong than time synchronization but sufficient for
ACTP. It comes in master-based, decentralized, and hybrid variants. Though all variants are
adequate, the master-based or hybrid variant should be preferred due to lower synchronization
offsets.1 Because hardware clocks deviate in clock rate and drift, periodical re-synchronization
is required. In BiPS, this is achieved by subdividing time into macro slots and by executing BBS
at the beginning of each macro slot. Runs of ACTP are scheduled relative to synchronization
ticks in ACTP-based virtual slot regions. Because these slot regions can be placed in macro slots
arbitrarily, weakly periodic applications of ACTP are possible. Since with this approach, ACTP
starts at pre-defined points in time only, it is, on the one hand, compliant with other MAC pro-
tocols, which can be executed in disjoint virtual slot regions, and supports, on the other hand,
duty cycling by switching transceivers to an idle state in unallocated parts of a macro slot.

1The synchronization offset influences the duration of bit rounds in terms of dmaxOffset and should therefore be
as small as possible.
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4.1.2 On the Impact of Resynchronization Intervals

A question arising when synchronizing periodically is regarding the optimal resynchronization
interval. In the presented communication solutions, this interval is given by the duration of
a macro slot dmacro. In general, if choosing a too small interval, a large amount of network
resources are dedicated to synchronization. But if, on the contrary, dmacro is very large, the
maximal synchronization offset dmaxOffset becomes significant due to diverging hardware clocks.
This, in turn, has a negative impact on the efficiency of synchronized protocols like TDMA or
ACTP, which is directly influenced by dmaxOffset as derived in Equation 3.6. On the one hand,
larger values of dmaxOffset increase the runtime of the protocol. On the other hand, they also
influence the protocol’s energy efficiency, which decreases due to larger guard times that must
be waited by receivers to detect a potential transmission.

In [CGKW13], we derive optimal resynchronization intervals under the assumption that the
considered network traffic consists of reservation-based frame transmissions in exclusive slot
regions. For this purpose, the energy consumption of receivers, which enable their transceivers
only to receive scheduled transmissions and for synchronization purpose, is considered. In this
regard, a variable drxInterval is introduced to evaluate different intervals of frame receptions.
Since receivers must ensure the timely activation of their transceiver, their wake-up time before
an expected frame reception directly depends on dmaxOffset. Thus, synchronization-related over-
head at receivers occurs both due to the synchronization itself and due to guard times that have to
be introduced to guarantee the timely operational readiness of transceivers. Their proportions
of a macro slot are calculated as follows:

oguard =
dmacro

drxInterval
· davgGuard︸ ︷︷ ︸

total guard time per macro slot

· 1
dmacro

=
davgGuard

drxInterval
, (4.1)

osync =
dsync

dmacro
, (4.2)

onode = osync + oguard, (4.3)

where dsync is the convergence delay of the synchronization protocol and davgGuard the average
guard time per frame reception. Ignoring switching delays of transceivers, davgGuard is identical
to dmaxOffset, which is the case if the average synchronization offset of nodes is 0 µs.

In Fig. 4.1, a plot illustrates a node’s total proportional overhead onode for three reception
intervals drxInterval and as function of the resynchronization interval dmacro. Crosses on each line
mark the optimal interval, i.e., the minimum of the curve. To determine osync, synchronization
by BBS is assumed with TI’s CC 2420 transceiver and a network of two hop diameter. The plot
demonstrates that the optimal resynchronization interval highly depends on the traffic volume:
If the volume is low, infrequent synchronizations achieve a better efficiency, since oguard is less
affected by increasing synchronization offsets. Vice versa, the portion of synchronization offset
is small in relation to guard times if the communication volume is high.

In sum, there is no universal optimal resynchronization interval but the interval depends on
the synchronization protocol’s convergence delay, offset, and the nodes’ traffic profile. Fur-
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Figure 4.1: Overhead as function of resynchronization intervals and three traffic patterns.

thermore, there is usually no single traffic profile but each node has its own communication
demands. Here, one possible approach is to minimize the overall overhead:

onetwork =
n

∑
i=1

onode,i, (4.4)

where onode,i is the overhead of node i. However, this approach may lead to unfair intervals, for
which some nodes “pay” significantly more than others. Thus, a possibly better approach is the
determination of a more balanced interval, which satisfies node-specific overheads regarding a
(realizable) threshold othreshold:

∀n
i=1onode,i ≤ othreshold. (4.5)

4.2 Deterministic Medium Arbitration

In this section, two applications are presented, in which ACTP is utilized as typical arbitra-
tion protocol. In this regard, Sect. 4.2.1 illustrates an ACTP-based solution to the hidden sta-
tion problem. Section 4.2.2 presents the application of ACTP to a problem class of control
systems, requiring network-wide and value-based arbitration to realize Maximum-Error-First
(MEF) scheduling of network resources.

4.2.1 ACTP-based Elimination of Hidden Stations

By applying ACTP with an arbitration radius of two hops, ACTP also provides a solution to
the hidden station problem. A corresponding configuration of medium slotting and ACTP pa-
rameters is presented in Fig. 4.2. In the shown macro slots, data slots are placed periodically
and relative to the start of the macro slot. They are subdivided into an arbitration phase, where
ACTP is applied with the aforementioned two hops radius and arbitration sequences of six bits
length, and a data transfer phase, where the winner transmits a regular data frame. If the trans-
mission of regular data frames is unicast, data transfer phases can optionally be dimensioned
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Figure 4.2: ACTP as deterministic solution to the hidden station problem.

to enable receivers the transmission of acknowledgments. W.r.t. the arbitration radius, it has to
be noted that arbitration is among sensing range, whereas regular data transfers reach commu-
nication range. Usually, it is assumed that communication ranges are not larger than sensing
ranges, which is also assumed here and must hold for the correct operation of the solution.

To guarantee collision-free transmissions of regular data frames, it must be ensured that arbi-
tration sequences are nonambiguous. A simple way to achieve uniqueness is the usage of node
identifiers. To improve fairness, a better solution are two-part arbitration sequences, which
consist of the (unique) node id and a prefixed (non-unique) waiting indicator that is initially
zero and incremented after a node loses arbitration.

Compared to RTS/CTS handshakes [Kar90], which are referenced as default solution to the
hidden station problem, 2-hop arbitration with ACTP differs in several aspects: First, ACTP
only allows transmissions at pre-defined points in time, whereas RTS/CTS handshakes are usu-
ally applied in unsynchronized networks and together with CSMA/CA, and can start when-
ever the medium is observed idle. Since data transfer phases have fixed length in the configura-
tion of the macro slot, the presented solution furthermore causes a waste of network resources if
the lengths of data frames differ. An additional drawback of the presented ACTP-based arbitra-
tion is the deterioration of the exposed station problem, because reservation encompasses two
“sensing hops” around the sender and not only one “communication hop” around sender and
receiver, and may furthermore suffer from the multi-hop competing problem. Besides these
drawbacks, ACTP has significant advantages as solution to the hidden station problem, which
are the support of duty cycling and the deterministic elimination of contest. Thus, it can guar-
antee that one station arises as winner within fixed time bounds, which cannot be guaranteed
by RTS/CTS handshakes due to their susceptibility to collisions.

4.2.2 Try-Once-Discard – Maximum Error First Scheduling with ACTP

Its predictable behavior makes ACTP to an attractive candidate for several problems of the con-
trol systems’ domain. One of these problems is the Try-Once-Discard (TOD) protocol [WYB02],
whose properties can be described in a formal way and allow stability proofs of (networked)
control systems. Though the theoretical background of TOD has been studied intensively, a
practical realization for wireless networks has been missing. After outlining TOD, this subsec-
tion presents such a realization and shows its applicability by means of a case study.
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4.2.2.1 Background of TOD

TOD has been introduced in [WYB02] and describes the dynamical scheduling of network re-
sources according to a Maximum-Error-First (MEF) strategy. The protocol is called “Try-Once-
Discard”, because a node never tries to send the same sample twice but always uses fresh
values. By applying MEF scheduling, TOD ensures that the sensor node reporting the great-
est weighted error among all participating nodes gains access to the medium and is allowed
to send its value to a controller. A significant advantage of TOD is the characterization of its
properties by Lyapunov functions [NT04, CTN07]. Thereby, stability of a control system can be
proven and estimates w.r.t. communication requirements can be derived.

Regarding communication requirements, two values are of particular interest for the stabil-
ity of a system [HTvdWN09]: The Maximum Allowable Transmission Interval (MATI), which
describes the (worst-case) sampling and communication interval, and the Maximum Allow-
able Delay (MAD), which limits the tolerable transfer delay between reading of samples and
their delivery to a controller. A usual assumption is that MAD is not larger than MATI, which
implies that one transfer is finished before the next one starts.

4.2.2.2 ACTP-based Realization of TOD

When devising a realization of TOD, protocol designers can ignore the control theoretical back-
ground and the form of the Lyapunov function. Instead, they can concentrate on the length of
weighted errors and samples, and on communication requirements given by MATI and MAD,
which must hold to guarantee the system’s stability. In a concrete solution, these requirements
must be defined by the control application and make the following demands on the communi-
cation system: First, the system must support the periodical and synchronous reading of new
samples, which calls for a synchronization protocol. Second, nodes have to run an arbitration
protocol, in which the node with the greatest weighted error, which is calculated as a function
of the read sample, must arise as network-wide winner and is afterwards allowed to transfer
its full sample value to a controller. Since contest must start simultaneously and the winner
has to be determined at runtime, this demands – in addition to a synchronization protocol – a
dynamical and value-based medium arbitration. Because all these steps must be performed in
compliance with MATI and MAD, arbitration and data transfer must be finished within fixed
time bounds, thereby rejecting all probabilistic and collision-prone protocols and turning ACTP
into an attractive solution, which is additionally well-suited for multi-hop topologies.

An ACTP-based solution is presented in Fig. 4.3 [CGSW14]. Macro slots are subdivided into
time slots of fixed length, which, in turn, consist of a TOD round, where a single sample is read
and potentially sent to a controller if its weighted error is maximal, and an idle phase, where

macro slot

...

synch slot
nw-wide 

ATCP phase
nw-wide data 
transfer phase

TOD round (dTOD)

time slot

idle phase (didle)

Figure 4.3: Realization of TOD with BBS and ACTP.
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nodes can switch-off their transceivers to save energy. A TOD round starts with an arbitration
phase, where ACTP runs with network-wide arbitration radius and with arbitration sequences
consisting of weighted errors and node identifiers to break ties. The ACTP phase is followed
by a data transfer phase, in which the winner transmits its sample in regular data frames with
high precision. The data transfer phase is dimensioned so that the sample can be forwarded to
a controller across the entire network along a pre-established route.

To fulfill a system’s stability conditions, the combined duration of ACTP phase and data
transfer phase must be smaller than MAD, i.e., dTOD ≤MAD must hold. Because this duration
depends on fixed parameters, it can be calculated in advance in order to check whether MAD is
met. As further condition, the sum of durations of TOD round and idle phase must not exceed
MATI (i.e., dTOD + didle ≤MATI), which can also be checked offline. To this end, the idle phase
represents a regulation screw w.r.t. duty cycling and must be sized small when communication
demands are high and vice versa. Since node identifiers are part of arbitration sequences and
thus received by all nodes during the ACTP phase, all nodes can check early after the end of the
ACTP phase whether they are part of the route between winner and controller.2 If this is not
the case, they can already switch off their transceiver during the data transfer phase to decrease
their duty cycle supplementarily.

4.2.2.3 Case Study – An Unstable Batch Reactor

The unstable batch reactor in [WYB02] is a standard example for stability proofs of control
systems. As shown in [JLS+10], its stability is given if MATI = 10.65ms is satisfied. In the
following, an ACTP-based communication solution to this scenario is sketched.

The solution is illustrated in Fig. 4.4 by one example TOD round and applies arbitration
sequences of length nbits = 7, comprising a weighted error of length nerror = 4 and a node iden-
tifier of length nid = 3. The network diameter is assumed to be nmaxHops = 3, which is also used
as arbitration radius nhops. In the shown TOD round, both Vd and Vg hold the same maximal
weighted error (14). Thus, they are both still in contest after ACTP’s first four bit phases. Since
Vd’s identifier is larger, Vg gets defeated during the last three bit phases when ACTP processes
node ids. Therefore, Vd is the only winner at the end of the ACTP phase and is – under consid-
eration of synchronization inaccuracy and guard times – allowed to transmit its sample in the
subsequent data transfer phase. Due to network-wide arbitration, this sample is forwarded by
Ve and Vg immediately and without further arbitration until it finally arrives at controller Vh.

To check whether the solution meets the scenario’s stability requirements, the durations of
ACTP phase (dactp) and data transfer phase (ddata) have to be calculated and compared with
MATI. In [CGSW14], we computed these delays for Atmel’s AT86RF230 transceiver [Atm09],
which is similar to TI’s CC 2420 transceiver [Tex07] but has some beneficial properties w.r.t.
switching times and CCA delay. With this transceiver, Equation 3.8 yields dactp = 6.405ms.

The duration of data transfer phase is calculated according to

ddata = d f rame · nhops + (nhops − 1) · dIFS + 2 · dmaxOffset

and results in ddata = 2.184ms under the assumption of 10 bytes regular payload. In total, this
yields a TOD round duration of dTOD = dactp + ddata = 8.589ms, which satisfies MATI and leaves

2This additionally assumes that nodes are aware of all routes, in which they participate.
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Figure 4.4: Example TOD round in the case study (nhops = 3,nbits = 7).

MATI− dTOD = 2.061ms space in between TOD rounds for synchronization and energy saving.
These gaps are actually very small, thereby offering only little opportunities to save energy.
They are also too small to host a full synchronization phase of BBS, which consequently has to
be subdivided into nhops synchronization rounds and distributed over the macro slot.3

4.3 Distributed Agreement on a Common Value

In this section, ACTP’s support for distributed voting and value transfer is illustrated by several
example scenarios. These scenarios include cases, where several nodes run ACTP with differ-
ent bit sequences and have to agree on a common value, as well as cases, in which ACTP’s
cooperative mode is applied to distribute values within guaranteed time bounds.

4.3.1 Network-wide Leader Election

In communication systems, leader election is a recurring task, e.g., to select coordinating nodes,
synchronization masters, or cluster heads. Due to deterministic and multi-hop-spanning elim-
ination of contest, ACTP provides an attractive solution to network-wide leader election. Ap-
plying ACTP to the election of local leaders requires special attention due to multi-hop com-
peting problems as outlined in Sect. 3.5 and is not further discussed in this section.

An example configuration for ACTP-based network-wide leader election with networks up
to a diameter of nmaxHops = 4 hops is illustrated in Fig. 4.5. In the presented slot configuration,

3Since the scenario is extremely demanding, it is hard to realize with hardware of WSNs. In this regard, it
should also be noted that the requirements cannot be satisfied with TI’s CC 2420 transceiver.
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Figure 4.5: Network-wide leader election with ACTP.

super slots consisting of four macro slots are introduced and leader election takes place in the
first macro slot only to reduce overhead and to run leader (re-)election with desired intervals.
The sent arbitration sequences have a length of nbits = 6 bits and are subdivided into three parts:
The first bit is called stay leader and can only be set dominantly by the current leader to enforce
its reelection. If the current leader does no longer candidate, this bit is recessive, thereby giving
all other participating nodes a chance to win. As positive side effect, leader node failures are
detected implicitly if this bit is recessive. The next two bits are referred to as resource constraint
and enable prioritization of nodes with more (remaining) hardware resources. This can, for
instance, also capture energy resources of battery-powered nodes, where a node with fresh
batteries starts with 112 and decreases the value when energy resources diminish. The last part
contains node identifiers to break ties and to guarantee uniqueness of bit sequences.

Since the arbitration radius corresponds to the network diameter, all nodes are aware of the
winner’s identifier at the end of the ACTP phase. Furthermore, they know the distance to the
new leader (see Sect. 3.3.2 about implicitly available information) as long as every node votes
for itself only. This limitation is yet not necessary and nodes can also vote for other nodes,
though it has to be ensured that the voted node is actually available and able to run as leader.
In this case, the voted node learns about its election by means of the monitored bit sequence.

4.3.2 Time Synchronization on Top of Tick Synchronization

Though tick synchronization is weaker than time synchronization, it is sufficient for ACTP and
many other functionalities of distributed systems like synchronous duty cycling and medium
slotting. However, for many application-level functionalities – like timestamping of events –,
time synchronization is required, which can be built on top of tick synchronization by asso-
ciating synchronization ticks with time values. Thereby, time synchronization is established
with the same accuracy as tick synchronization. Corresponding extensions of BBS have been
proposed in [CGK09, GK11a].4

Since BBS and its extensions are internal synchronization protocols, it is reasonable to intro-
duce virtual clocks, which are independent of external time sources in the first instance but al-
low conversion into external time if required. Their values can be subdivided into a macro tick
value and a micro tick value. Macro tick values are coarse-grained and incremented with each
tick, i.e., at the beginning of each new macro slot. Thus, their physical equivalence depends
on the duration of macro slots. Micro tick values, on the other hand, are fine-grained, increase

4For the cooperative exchange of time values, [CGK09, GK11a] incorporate a different protocol, whereas the
solution below applies ACTP.
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relative to the last synchronization tick, and are reset to 0 when macro ticks increase. Their
physical unit is in principal unrestricted but is limited by the granularity of hardware clocks
in practice. With the Imote 2 platform (see Appendix A), micro ticks of 1 µs can be achieved,
whereas a reasonable (but not prescribed) granularity for macro ticks is 1 s.

While micro tick values are calculated by each node independently, macro tick values must
be communicated in the network. In a stable network, it is in general sufficient to communicate
them once during the network’s initialization. However, in real-world scenarios, nodes may
also join the network later, thereby asking for the periodical exchange of macro tick values. In
this regard, a trade-off between overhead and a node’s entry delay has to be found. To ensure
that deterministic tick synchronization turns into deterministic time synchronization, exchange
of macro tick values must be reliable and with bounded transfer delay, thereby making ACTP
with network-wide propagation an attractive candidate.

A corresponding example configuration of super slots and ACTP parameters is presented
in Fig. 4.6 for a network diameter of nhops = nmaxHops = 3 hops. In the example, a super slot
consists of 128 macro slots and macro tick values are exchanged in the first macro slot only.
ACTP’s arbitration sequences have a length of 28 bits and are divided into three parts: The
master’s vote bit can only be set dominantly by a master node to enforce the propagation of its
macro tick value and reflects the master-based variant of BBS. The second part contains the
macro tick value that is associated with the last synchronization tick, i.e., with the tick of macro
slot 0. The last part completes the bit sequences with a checksum of two bits to avoid the
acceptance of corrupted macro tick values. Retransmissions in case of transmission errors are
not scheduled but nodes have to wait until the next regular exchange of the macro tick value.

If a master is available in the network, the first bit of detected arbitration sequences is domi-
nant. Thereby, all nodes but the master refrain from the transmission of their macro tick value
and the ACTP run turns into a quasi-cooperative transfer with a single data source. If, however,
the master node fails, the first bit is recessive and all nodes continue sending their macro tick
value. As a consequence, they determine the maximum of all sent values, thereby potentially
skipping values but never setting the virtual clock to the past. Because macro tick values are
sent every 128th macro slot only, new nodes have – assuming a macro slot duration of 1 s – to
wait up to ∼ 2 minutes before being time-synchronized. However, this drawback is put into
perspective by two advantages w.r.t. overhead: First, network resources are saved, because the
number of ACTP runs is reduced. Second, the length of arbitration sequences can be decreased,
because the last 7 bits of the macro tick value do not need to be transferred. Thus, macro tick
values can have a length of 32 bits, though only 25 bits are propagated with ACTP.
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Figure 4.6: Exchange of macro tick values with ACTP.
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4.3.3 Signaling of Network Mode Changes

A further possible application of ACTP is the signaling of changes of the operation mode of a
network. Such an application is deployed in the VI-P demonstrator of the joint project SINN-
ODIUM, where two operation modes are supported by the network: A calibration mode, in
which the topology of the network is determined [Kra13a], and an on-duty mode, in which sen-
sor and actuator services are provided via a middleware [Kra14]. Since both modes differ in
the communication demands of nodes, each mode runs with a particular slot configuration:
In calibration mode, transmission slots are assigned such that all nodes, whose id is in a pre-
configured range, own an equal number of slots. In the on-duty mode, slotting is different and
according to the service-dependent communication demands.
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Figure 4.7: Signaling of network mode changes with ACTP.

The calibration mode is only required during the initialization phase until all mandatory
nodes are available and the network is stable. To terminate this phase and to switch between
calibration and on-duty mode in an atomic way, virtual slot regions with ACTP are introduced
in both slot configurations. Figure 4.7 presents this setup for a network with nmaxHops = 4 hops
diameter. In both macro slot configurations, ACTP is located at the end of the macro slots and
runs with arbitration sequences of 2 bits length and a radius of nnops = nmaxHops. The first bit
of the sent sequences is reserved for the master of the network, which triggers the termination
of the initialization phase and the change to the on-duty mode by sending this bit dominantly.
The second bit is used by all non-master nodes to request the termination of the calibration
mode. For this purpose, a non-master node sends a dominant bit if the network is not yet seen
stable and recessive otherwise. Thus, the second bit is detected dominantly on the medium as
long as some node monitors unstable network conditions. Though nodes can detect whether all
other nodes see a stable network by the second bit, this bit is not evaluated to trigger changes to
the on-duty mode. Instead, nodes switch to on-duty mode only if the master sends a dominant
first bit. Hence, the master can enforce a mode change if the network does not seem to become
stable or – the other way round – delay the termination of the initialization phase even under
stable network conditions if mandatory nodes have not yet joined the network.
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4.3.4 Network-wide Acknowledgments with ACTP

In wireless systems, existing ARQ schemes for uni-cast transmissions can usually not be ap-
plied to confirm broad- or multi-cast transmissions, since regular ACK or NAK frames would
collide destructively. By encoding acknowledgments in arbitration sequences, ACTP enables a
way to remove this limitation and to make overlapping confirmations possible. This approach
is not only applicable to confirm single-hop data transfers, but can also be applied to multi-hop
or network-wide data transfers, which are, for instance, performed by ACTP. In this regard, see
also Sect. 3.6.2 about ACTP and error control.
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Figure 4.8: Realization of network-wide negative acknowledgments with ACTP.

A reasonable example configuration of a corresponding macro slot is illustrated in Fig. 4.8.
Here, data is transferred in periodical data slots with ACTP and 3 hops radius. Immediately
after the ACTP-based data propagation, a second ACTP run is scheduled with bit sequences of
2 bits length and the same arbitration radius. Due to a checksum that is appended to the data
propagated in the first ACTP run, receivers can check whether the received data is corrupted
and can send an accordant confirmation in the second ACTP run. In more detail, the bit se-
quences of the second run are as follows: The first bit is set dominantly by all receivers, thereby
informing the senders of the data that there is actually a node listening. Though this informa-
tion is not necessary w.r.t. error control, it is in some cases a useful information for senders that
is also not available with conventional multi-/broadcast transmissions. The second bit of the
sequence represents the actual error flag with a negative acknowledgment semantics, i.e., it is
dominant if an error has been detected. Thus, senders of the first ACTP run are informed about
a transmission error as soon as (at least) one receiver sends a dominant second bit in the second
ACTP run.

As long as radii are network-wide, the propagation of data in the first ACTP run can occur
both with ACTP’s cooperative as well as arbitrating mode. However, implications of errors
are more far-reaching if ACTP is applied in arbitration mode and if nodes participate with
different bit sequences, because detected errors do not only allude to data errors but can also
imply arbitration errors with wrong or even multiple winners. In this case, retransmissions can
reveal significantly different winners and bit sequences.
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4.4 ACTP as Communication Primitive of a QoS Routing Protocol

Several applications of ACTP can be found in the routing protocol Black Burst-based Quality-
of-Service Routing (BBQR) [BBCG11]. The protocol’s objective is to discover a shortest path
between a source and a destination satisfying a desired QoS specification. By serializing con-
current route discoveries and avoiding destructive frame collisions, BBQR guarantees route
discoveries with constant delay. Since the full BBQR protocol is outside the scope of this thesis,
the following paragraphs provide only a brief overview of its behavior, which is described by
four phases (see also Fig. 4.9):

RREQ
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(cooperative
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idle slot

route discovery

synch slot

... ...

route discovery interval
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restricted
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regular
data

frames

Figure 4.9: Application of ACTP in BBQR [BBCG11].

The first phase is called Route REQuest selection (RREQ) and determines the source node of
the upcoming route discovery. For this purpose, one ACTP run is performed by all nodes with
open route requests and with network-wide arbitration radius. Thereby, all nodes participating
actively during this ACTP run become potential sources of the route discovery. To guarantee a
unique winner, the identifiers of the nodes are included in the arbitration sequences. Further-
more, QoS requirements and the destination’s identifier are included in the sequence to inform
the destination about its role in the route discovery.

In the second phase (Route REPly (RREP)), ACTP’s cooperative mode5 is used to discover
all routes fulfilling the QoS requirements. This phase is initiated by the destination node and
consists of several ACTP runs traveling hop-by-hop towards the source. The number of ACTP
runs depends on a pre-configured parameter nmaxRouteLength, which defines an upper hop bound
on tolerable route lengths. Since only nodes that can fulfill the QoS requirements start an ACTP
run during this second phase, only feasible routes are found.

The third phase is called Construction REQuest (CREQ) and selects one of the feasible routes.
For this purpose, ACTP is applied – starting at the source node – at most nmaxRouteLength times
with restricted arbitration radii of 2 hops. After the destination receives the CREQ bit sequence,
a feasible route has been selected. Phase four (Construction REPly (CREP)) informs finally
all nodes along the route about node identifiers of their successors. Since there is no contest
anymore, regular data frames are used.

5Actually, [BBCG11] incorporates a different cooperative protocol but ACTP would work as well.
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4.5 Discussion

In the literature, there are many wireless protocols requiring synchronization but do not state
how to achieve it or incorporate external solutions like GPS [US 08]. This statement also holds
for many existing binary countdown protocols (see Chapter 6.2 for a comprehensive compari-
son). In this chapter, we revisit ACTP by presenting a complete communication solution with
macro slots, integrated synchronization, and ACTP-based virtual slot regions. Thereby, we
show that ACTP can be combined with an internal yet independent synchronization protocol,
which satisfies demands on network-wide synchronization with bounded offset and comes
without additional hardware requirements. Furthermore, the presented solution enables the
flexible scheduling of ACTP runs at pre-defined but configurable positions within macro slots.

Since synchronization happens independently from runs of ACTP, compliance with duty
cycling is achieved, which is a precondition for every protocol of WSNs. Though suggested
periodical (re-)synchronizations seem to increase overhead if the the protocol runs very rarely,
they often cause no extra costs due to other distributed functionalities requiring synchroniza-
tion like TDMA. Furthermore, the overhead is even lower if the protocol runs frequently. In
this regard, it can be observed that existing binary countdown protocols with on demand syn-
chronization (see e.g., WiDom [PAT07] in Sect. 6.2.5) suffer from much higher overhead due to
too frequent and inefficient synchronizations.

Regarding duty cycling in wireless networks, Ye et al. identified four sources of energy waste
[YHE02, YHE04]: Overhearing (receiving data that is addressed to a different node), collisions
(losing data due to destructive overlap of transmissions), idle listening (listening to the medium
while there is no transmission), and control (packet) overhead (transmission/reception of manage-
ment traffic). In relation to these sources, ACTP-based arbitration first of all “wastes” energy
due to control overhead caused by costly black burst transmissions. However, this is the price
to pay in order to reduce the other sources of energy waste: Overhearing by giving nodes the
opportunity to switch off their transceiver after receiving the winners’ bit sequence, idle listen-
ing by running ACTP in weakly periodic virtual slot regions only, and, in particular, collisions
by avoiding destructive overlap entirely.

While the deterministic solution of contest is one of ACTP’s biggest advantages, its high
dependence on synchronization reveals the protocol’s major drawback. Thus, ACTP runs must
only start at pre-determined points in time and with pre-configured parameters. A further
drawback of ACTP is disclosed by the case study in Sect. 4.2.2 and concerns the transmitted
data volume, which is significantly lower than data rates of regular transmission techniques.

Though these drawbacks prevent ACTP’s usage as general purpose protocol, the seven ap-
plications in this chapter illustrate the actual target domain of ACTP: Deterministic arbitration
and value propagation. In applications, in which ACTP is used for arbitration, it is shown that
ACTP resolves contest value-based, deterministically, with bounded delay, and across multiple
hops. Further applications illustrate ACTP’s capabilities to encode payload by black bursts,
which is utilized for collision-protected data transfer and distributed value agreements. Thus,
ACTP is not only an arbitration protocol but provides an interface for reliable multi-hop data
propagation, which outperforms collision-prone communication schemes in dense networks.
Due to its configurability w.r.t. bit sequence length and arbitration radius, the protocol is not
specific for a single scenario but can be tailored to particular needs and network properties.
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Experimental Evaluation of ACTP
To provide evidence of their benefits and correctness, communication protocols – and software
systems in general – require thorough testing and assessments. This, particularly, holds for pro-
tocols adopting relatively unusual communication primitives like black bursts. In this chapter,
results of evaluations are presented to provide this evidence for ACTP.

While the overall objective of this chapter is the provision of a proof-of-concept for ACTP,
its main interest is in the evaluation of black bursts. In this regard, their collision resistance
receives particular attention, since it is the key foundation of ACTP’s deterministic behavior.
However, evaluations of ACTP are presented as well with the focus on the protocol’s correct-
ness w.r.t. arbitration and value transfer. Though simulative evaluations would have the ad-
vantage of being fully reproducible, this chapter goes for experimental evaluations with Imote 2
platforms (see Appendix A). The reasons for this decision are twofold: First, properties of sim-
ulation models may possibly deviate from the real world in some important points, thereby
reducing the expressiveness of the results. Furthermore, evaluating ACTP and black bursts by
experiments enables to investigate how they perform in dynamic and partially uncontrollable
environments, in which, for instance, sources of external interference exist.

The rest of this chapter is structured as follows: Section 5.1 motivates the need of exper-
imental evaluations. In Sect. 5.2, the reliability of black burst transmissions is assessed and
compared to regular MAC frame transmissions. Section 5.3 presents results of a series of out-
door experiments with the focus on overlapping black burst transmissions. Section 5.4 proves
the optimization from Sect. 2.4.3 regarding the accuracy of black burst detection. In Sect. 5.5, an
indoor experiment is presented to validate ACTP’s implementation and to provide evidence of
the protocol’s benefits. Finally, Sect. 5.6 draws conclusions.

Some of the presented results have been published in [8], [16], and [22].

5.1 Motivation

A common way to evaluate communication protocols is by the usage of network simulators
like ns-21, ns-32, OMNeT++3, or TOSSIM4. During their first days, these simulators supported
only very simple wireless propagation models like models, whose communication success is
influenced by node distances only. But as, e.g., shown in [CM10], the correlation between dis-
tance and RSS is sometimes not very high – in particular, in indoor environments with small

1http://www.isi.edu/nsnam/ns/
2http://www.nsnam.org/
3http://www.omnetpp.org/
4http://www.tinyos.net/

http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/
http://www.omnetpp.org/
http://www.tinyos.net/
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distances –, thereby disqualifying such simple models for realistic evaluations. However, cur-
rent simulator versions also support more sophisticated models that consider noise and signal
variability by means of statistical approaches. In this regard, a famous example is the shadow-
ing model, which can, for instance, be found in ns-2 and respects signal variations by Gaussian
random variables. To improve simulation accuracy further, a current trend is the derivation of
statistical noise and interference models from empirical data. The TinyOS SIMulator (TOSSIM),
for instance, supports the Closest-fit Pattern Matching (CPM) algorithm [LCL07], which uses
signal strength traces from real-world scenarios to derive such models.

Yet, not only the fidelity of medium and propagation models has been improved over the
last years, but also the simulation of hardware could be enhanced. This includes wireless
transceivers, where much attention has been paid to TI’s CC 2420 transceiver [Tex07] due to
its popularity. As a consequence, there are now a couple of CC 2420 models – e.g., for ns-
3 [IG13, Gro12] and TOSSIM [SJK07] – providing a detailed model of the transceiver and
IEEE 802.15.4-based communication. They support, for instance, the configuration of synchro-
nization words, CCA thresholds and hysteresis, as well as power and channel settings.

In this chapter, we do not apply simulations but prefer real-world experiments in partially
noisy and dynamic environments with the Imote 2 platform [MEMara]. Though experiments
on the wireless channel are usually not completely reproducible due to measurement inaccu-
racy and low control over noise and interference, they should be favored, since simulators do
still not fully coincide with reality and black bursts depend on some physical properties that
are only insufficiently captured by simulators. Examples of such simulator shortcomings are
the neglect of spatial correlation of noise and interference in CPM [LCL07] and the missing ac-
cumulation of overlapping interferences in [IG13], which make these medium and transceiver
models unsuitable for the evaluation of the collision resistance of black bursts.

Another aspect that argues for experiments is the missing or inaccurate consideration of
some important hardware characteristics in simulation models. In [Eng13, ECG14], it is, for
instance, shown that the switching times of the CC 2420 transceiver are slightly larger than the
corresponding data sheet values and that delays of hardware interrupt handling must not be
neglected. These delays are, however, often not respected in models, since they are simplified
and/or derived from data sheets. Thus, experimental evaluations are indispensable to validate
the realization of the timing constraints of ACTP.

5.2 Indoor Experiments with Black Bursts

In this section, results of two small-scale experiment series are presented to provide a proof-of-
concept for black burst-based communication (Sect. 5.2.1) and to relate black bursts to regular
data frames (Sect. 5.2.2). All experiments were conducted in an office environment without
validity of the single-network property.

5.2.1 Reliability of Overlapping Black Burst Transmissions

For black burst-based communication protocols, it is crucial that black burst transmissions are
actually collision-resistant. In the following, a lightweight evidence of this property is provided
by provoking overlapping transmissions of black bursts.
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5.2.1.1 Experiment Setup

The assembled topology is illustrated in Fig. 5.1 and consisted of one master and two slaves.
The master synchronized both slaves by periodically sending beacons, which were realized
by regular IEEE 802.15.4-compliant MAC frames [Ins11], in 1 s intervals. To enable filtering of
failed synchronization rounds in a post-processing step, each beacon carried a round number
that was recorded by slaves. BBS was not incorporated into the scenario, because beacon-based
synchronization is sufficient in single-hop networks and achieves better accuracy.5

VaVb 1. beacon( idround)

2. black bursts

2 m

Vc master

slave

2 m

1. beacon( idround)

2. black bursts

Figure 5.1: Topology to validate the collision resistance of black bursts.

In each synchronization interval, both slaves sent 40 black bursts in intervals of 20 ms simul-
taneously and with maximal transmission power of 0 dBm. Apart from beacons, the master
did not send any data but listened for black bursts on the medium and reported them to a
connected PC. In total, the experiment ran for 5,000 synchronization rounds, but due to missed
beacons by one or both slaves, three rounds had to be invalidated during post-processing.

5.2.1.2 Experiment Results

The number of detected black bursts is presented in Fig. 5.2 for the first 300 synchronization
rounds. Though the plot illustrates a high success rate, it also shows synchronization rounds
with false negatives, i.e., where sent black bursts are lost. In the first hundred rounds, there
are five of them, which are distributed over five synchronization rounds, yet also rounds with
more missed black bursts can be observed at the end of the excerpt. Over the entire runtime of
the experiment, synchronization rounds with up to six false negatives were monitored, and the
overall detection ratio adds up to 99.1%.
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Figure 5.2: Detection ratio of black bursts and filtered invalid medium occupancies.

5According to the data sheet of the CC 2420 transceiver, accuracy of SFD-based synchronization is about 3 µs,
whereas the BBS version, which was available at the experiments’ time, achieved 128 µs base offset. In the meantime,
BBS has been optimized and now achieves similar accuracy for single-hop synchronization [Eng13, ECG14].
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Analyzing the origin of these faults reveals that for many false negatives the master could
indeed detect medium occupancies but had to filter them out, because their duration did not
coincide with the duration of valid black bursts (see Sect. 2.3.2 and the number of “invalid”
medium occupancies in Fig. 5.2). Since we observed significantly less false negatives in experi-
ments without external interference (see Sect. 5.3), the results manifest that external interference
does not only increase the obvious risk of false positives but also of false negatives due to dis-
tortion of medium occupancies. In particular, the influence of external interference was in the
presented experiment higher on false negatives than on false positives, since only two unex-
pected black bursts were observed during the experiment’s runtime.6 As a lesson learned from
the relatively high number of false negatives, the results substantiate the necessity of a valid
single-network property, which was not given in this experiment.

5.2.2 Black Burst-based Communication vs. Regular Data Frames

This section investigates differences between transmission ranges of black bursts and regular
MAC frames. The results lay the foundation for the adjustment of both ranges by calibrating
the CCA threshold of transceivers (see also Sect. 2.4.2).

5.2.2.1 Experiment Setup

The used topology is shown in Fig. 5.3 and consisted of two nodes that were positioned with
a distance of 0.5 m. Different from their usual realization with shortened frame length and
random synchronization word, black bursts were implemented as regular and IEEE 802.15.4-
compliant frames to enable their additional reception as MAC frame, which was possible due
to the absence of overlapping transmissions. The receiver’s role was taken by node Va, which
recorded the reception of a black burst if a corresponding medium occupancy was detected by
the CCA mechanism and/or the reception of a MAC frame if the SFD was detected and the
frame’s checksum was correct. The transceiver’s CCA threshold was set to -97 dBm, which is
very low and was just above the noise floor level.

Va Vb

0.5 m

black bursts

Figure 5.3: Topology to compare ranges of black bursts and regular MAC frames.

The distance between both nodes was kept constant but the output power for transmissions
was varied to emulate RSS changes. Due to the small distance between sender and receiver,
experiments ran only with power levels {1, . . . ,9}, ranging from about -33 dBm to -12 dBm. For
each power level, 30,000 transmissions were performed with intervals of 20 ms.

5.2.2.2 Experiment Results

The first plot in Fig. 5.4(a) presents the reception ratios of black bursts and MAC frames for
five transmission power levels. With an output power of -33 dBm, 44% of all transmissions
are detected as black bursts, whereas only 27% of them are received as MAC frames. Starting

6I.e., the master interpreted two medium occupancies as black bursts without any black burst transmission.
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Figure 5.4: Comparisons between black burst and MAC frame transmissions.

from an output power of -25 dBm, both ratios are almost 100%. Though the gap is smaller
for larger power levels, the detection ratio of black bursts is never below the reception ratio
of regular MAC frames. Interestingly, detection ratios of black bursts even become 100% for
an output power of -22 dBm (and higher), whereas reception ratios of regular MAC frames are
only about 99.5%. Thus, black burst transmissions are more reliable in this experiment, yet with
smaller entropy (1 bit in black bursts vs. several bytes in MAC frames). In summary, the results
confirm the usual assumption that sensing ranges are larger than communication ranges. Since
the sensing range can actively be adjusted by changing the transceivers’ CCA threshold, this
statement is, however, not universal, but should be understood as “configurations are feasible
(and usual), in which the sensing range is larger than the communication range”.

As implied by Fig. 5.4(a), black bursts can be detected for RSS values, at which regular MAC
frames are received corrupted or not at all. To investigate this issue in more detail, Fig. 5.4(b)
plots the ratio between correctly received MAC frames and correctly detected black bursts as
function of RSSs. For low RSSs, the plot demonstrates that the number of detected black bursts
is indeed higher, since the ratio is clearly smaller than 1. Only with RSSs of -90 dBm and higher,
the ratio becomes roughly 1. Thus, a CCA threshold of -90 dBm seems to be adequate to equal-
ize the transmission ranges of black bursts and MAC frames. For some applications like BBQR
(see Sect. 4.4), this is a desirable property, yet other applications (e.g., BBS) benefit from larger
black burst ranges. In this regard, it has, however, to be considered that simultaneously sent
black bursts can overlap constructively, thereby increasing their power level and transmission
range. This fact is investigated in the next section.
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5.3 Outdoor Experiments with Black Bursts

This section presents evaluation results of a larger series of outdoor experiments. The focus of
these experiments was on detection ratios of dominant and recessive bits, false positives/neg-
atives, and accuracy of black burst detections. The experiments were repeated with different
numbers of simultaneous transmitters to validate the collision resistance of black bursts.

5.3.1 Experiment Setup

The experiments took place in a semi-controlled environment and with line-of-sight between
all nodes. The validity of the single-network property could be achieved by running the exper-
iments on a forest parking lot outside the range of interfering networks. In total, eight Imote 2
nodes were deployed and placed as shown in Fig. 5.5. Up to five of them (Vs1,. . . ,Vs5) acted
as transmitters of black bursts with maximal output power; two others (Vr1, Vr2) were used as
receivers and connected to laptops. The last node served as controller and triggered transmis-
sions of the five sending nodes by wire. Thereby, the start of black burst transmissions was
highly synchronized with very low offset. Besides Imote 2 nodes, two software-defined radios
(Universal Software Radio Peripheral (USRP 2), [Ett13]) were deployed next to the receiving
Imote 2 nodes to gather more fine-grained information on the medium state.

Experiments ran with five different distance setups. While the placement of the five trans-
mitters was never changed, distances to the receivers were varied from 5 m up to 30 m (see
Table 5.1). For each distance configuration, experiments were conducted with three numbers
of transmitters (1, 2, and 5). In every distance/transmitter configuration, 60,000 black bursts
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Figure 5.5: Topology and pictures of the experiments’ setup.
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experiment approx. distance to senders
series la lb lc Vr1 (= la + lb) Vr2 (= la + lc)

1 5 m 0 m 0 m 5 m 5 m
2 5 m 0 m 5 m 5 m 10 m
3 10 m 0 m 10 m 10 m 20 m
4 10 m 10 m 10 m 20 m 20 m
5 20 m 10 m 10 m 30 m 30 m

Table 5.1: Variations of la, lb, and lc in the five experiment series.

were sent in intervals of 10 ms. To enable the evaluation of false positives, recessive bits are as-
sumed in between black burst transmissions. According to the configuration, the run of a single
experiment took 10 minutes. Consequently, the entire experiment series lasted 150 minutes.

5.3.2 Experiment Results

In a first step, the success rates of black bursts (true positives) are evaluated for each config-
uration of distances and transmitters. For receiver Vr2, corresponding results are plotted in
Fig. 5.6. Up to 20 m, the plot shows perfect success rates of 100%, which are independent of the
number of senders. At 30 m, the distance approximates the sensitivity range of the transceiver
and the success rate falls to 97.9% with a single sender. Yet, with two and five senders, success
rates increase again, thereby indicating additive interference of overlapping black burst trans-
missions. Success rates of receiver Vr1 are not shown in the plot, since they are similar – yet,
a bit lower – to Vr2’s results and improve with increasing number of transmitters as well. To
evaluate success rates of recessive bit transmissions, the number of false positives is counted.
However, there was actually no wrong black burst detection during any experiment, which is
due to the validity of the single-network property.

To take a closer look at the type of black burst interference, the energy level on the medium is
evaluated with help of the USRP 2 at station 1 (Vusrp1). The resulting SNRs during black burst
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Figure 5.7: SNRs of black burst transmissions.

transmissions are plotted in Fig. 5.7, where black lines mark the median, boxes the first/third
quartile, and whiskers the min/max SNRs. The results confirm the assumption of additive
overlap, because SNRs never decrease with increasing number of transmitters. The additive
interference can be explained both by chaotic signal propagation, which makes signal can-
cellation very unlikely, and by preventative countermeasures in the implementation (unique
synchronization words) that prevent nodes from sending identical signals.

Further evidence of additive interference is provided by Fig. 5.8, where durations of detected
black bursts are plotted. The histograms exemplarily show results of the third experiment series
and nodes Vr2 and Vusrp2. Results of the Imote 2 illustrate the mode of operation of the CCA
mechanism, since they correspond to a multiple of the symbol duration of 16 µs.7 Different from
the Imote 2, which sees medium occupancies mostly longer than the transmissions actually
took, the USRP 2 detects medium occupancies much more accurately and with lower spreading.
In this regard, it has to be noted that sent black bursts were implemented by non-regular MAC
frames with four bytes length (128 µs). But as suggested by the fact that the durations detected
by the USRP 2 are smaller than 128 µs and as confirmed by later experiments in [Eng13], this
realization is faulty, since the CC 2420 transceiver stops transmissions, in which the length field
is set to 0, prematurely. As a result, later implementations realize black bursts by MAC frames
of 160 µs length to guarantee that the duration of black bursts is larger than the maximal CCA
delay (dmaxCCA = 128µs).

For both node types, Fig. 5.8 shows an increase of detected durations with increasing number
of senders. However, the increase is much higher for the Imote 2 (154.9 µs on average with one
sender to 177.6 µs on average with five senders) than for the USRP 2 (119.9 µs to 125.2 µs). One
reason of the increase is the time difference in the start of transmissions, because the controller
cannot trigger all senders in full synchronicity. For the Imote 2, the main reason is, however,
different and lies in the mode of operation of the CCA mechanism: Since CCA is based on
RSSIs that are averaged over eight transmission symbols, an increasing number of senders,
which cause a raise of the energy level on the medium, provokes an earlier exceedance of the

7The small deviations of ±1µs are due to the clock’s granularity and measurement inaccuracies.
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Figure 5.8: Histograms over durations of medium occupancies caused by black bursts.

CCA threshold at the beginning of transmissions and, vice versa, a later lower deviation after
the end of transmissions.

In a last step, the accuracy of black burst detection is evaluated w.r.t. temporal offset between
Vr1 and Vr2. The corresponding results are plotted by box-and-whisker plots in Fig. 5.9 for the
experiment series one to four. On average, node Vr1 observes the start of black bursts later
than Vr2. Thus, it is reasonable to assume that the transceiver of Vr2 worked better than Vr1’s
one. This statement is also supported by the median of the offsets in the first series, which is
about−25µs, though the distance of both nodes to the transmitters was identical. Similarly, the
nodes’ offset in the second experiment series is almost symmetrical around 0 µs, though Vr2’s
distance to the transmitters was twice as long.
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Figure 5.9: Temporal offset regarding detection of black bursts between Vr1 and Vr2.

5.4 Evaluation of Optimized Transmission Detections

In Sect. 2.4.3, an optimization regarding the calculation of the start times of transmission was
presented that is based on the back calculation of the transmission start by observing the gradi-
ent of the RSSI. By means of an experimental validation, this section now provides evidence of
the optimization’s correctness and quantifies improvements over transmission detections that
utilize timestamps of CCA events only.

5.4.1 Experiment Setup

The deployed topology consisted of two nodes and is presented in Fig. 5.10. The sender Va

periodically sent black bursts in intervals of 10 ms that were detected by receiver Vb’s CCA
mechanism, which was configured with a threshold of -85 dBm. In addition to monitoring the
timestamp of the CCA event, the receiver applied the optimization from Sect. 2.4.3 to get a more
accurate timestamp of the start of a transmission. To compare the timestamps of the detected/-
calculated transmission start with the actual transmission start, both nodes were connected by
wire, whose level was changed by the sender at the beginning of a new transmission. The ex-
periment ran with three different distances between sender and receiver: 2 m, 5 m, and 10 m.
Furthermore, the sender varied the output power in eight steps from -25 dBm to 0 dBm. For
each distance/power configuration, 10,000 black bursts were sent.

Va

{2, 5, 10} m

Vbblack bursts

Figure 5.10: Topology to evaluate the back calculation of the start times of transmissions.
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5.4.2 Experiment Results

Results of these experiments are presented in Fig. 5.11 for all distance and output power config-
urations. The box-and-whisker plots show the time difference between the start of transmission
at the sender and the detected/calculated start at the receiver.

For all distances and power levels, back calculated timestamps are more accurate than the
timestamps of the CCA events, thereby providing evidence of the usefulness of the optimiza-
tion. The improvements are, in particular, observable when transmission power is low. At a
distance of 2 m and with -25 dBm output power, for instance, the median of time differences
is 82 µs with detected timestamps and 23 µs with optimized timestamp calculation. Moving
sender and receiver apart even increases this gap. An explanation of this effect is the differ-
ence between CCA threshold and the RSSs of transmissions. In this regard, see also Table 5.2
that presents the average RSSs for each distance and transmission power. For large distances
and/or low output power, RSSs – and thus also differences to the CCA threshold – are very
small. Hence, more transmission symbols are required in the averaged RSSI calculation of
the transceiver to exceed the CCA threshold. Consequently, delays until the CCA mechanism
indicates a busy medium increase. Without back calculation, these increasing delays remain
unnoticed.

While the median of the time differences is always significantly better with back calculated
timestamps, worst-case differences are sometimes not such large. This particularly holds for
low transmission powers, where some outliers push worst-case differences of back calculated
timestamps up. A possible explanation of this observation are again the low RSSs of the corre-
sponding transmissions and the variability of the signal strengths of symbols. These conditions
can together defer the detection of a transmission by more than eight symbol periods, which
can only partially be corrected by the back calculation. The fact that there are some cases, in
which the timestamp of the CCA event is larger than 128 µs (e.g., at 5 m distance, the worst-case
difference is 145 µs), supports this assumption. A further indication confirming this assumption
is the very high number of false negatives in configurations with low transmission power. For
instance, only 25 out of 10,000 black bursts were perceived with -25 dBm transmission power
and 10 m distance.

-25 dBm -15 dBm -10 dBm -7 dBm -5 dBm -3 dBm -1 dBm 0 dBm

2 m -78.0 dBm -67.9 dBm -62.9 dBm -59.6 dBm -55.9 dBm -55.2 dBm -54.9 dBm -54.0 dBm
5 m -81.8 dBm -71.6 dBm -65.9 dBm -63.0 dBm -60.3 dBm -58.7 dBm -55.5 dBm -53.5 dBm
10 m -85.0 dBm -77.9 dBm -73.2 dBm -69.0 dBm -66.1 dBm -64.4 dBm -63.0 dBm -61.7 dBm

Table 5.2: Average RSSs as function of distance and transmission power.
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(a) 2 m distance between sender and receiver.
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(b) 5 m distance between sender and receiver.
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(c) 10 m distance between sender and receiver.

Figure 5.11: Time difference between transmissions’ start and detected/calculated start.
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5.5 Evaluation of ACTP: A Proof-of-Concept

In this section, the feasibility of ACTP is demonstrated by means of an experimental evaluation
in a small multi-hop scenario. Besides quantifying ACTP’s reliability, the evaluation further-
more comprises a check of the protocol’s timing constraints (see Sect. 3.2.2) and a validation
of their correct realization in the stand-alone implementation (see Sect. 3.7.2.1).8 Furthermore,
it provides a practical proof-of-concept that periodical resynchronization is sufficient and that
compliance with duty cycling and other MAC protocols is achievable.

5.5.1 Experiment Setup

In the topology, four nodes were deployed as shown in Fig. 5.12. They were placed such that the
network diameter yielded nmaxHops = 2 hops. Though the scenario is small, it is sufficient to test
ACTP’s key properties, which are multi-hop arbitration and collision-resistant propagation of
bit sequences. The experiment ran indoor in an office building and with violation of the single-
network property due to neighbored IEEE 802.11 [Ins12a] and IEEE 802.15.1 networks [IEE05].
The nodes were distributed over three rooms, where people were additionally moving around.
Thus, nodes were mostly neither in line-of-sight of each other nor in a static environment.

macrod        = 1s

ACTP run

idle

synchronization (BBS)
Va

Vb

Vc

Vd

100ms

master

slave

Figure 5.12: Topology and macro slot configuration to evaluate ACTP.

The experiment lasted about five hours and synchronization was performed with the master-
based variant of BBS with resynchronization intervals of 1 s. In each macro slot, 10 ACTP runs
with network-wide arbitration radius were placed in equidistant intervals of 100 ms. Thus, a
total of 180,000 arbitrations are included in the results of the evaluation. The sent arbitration
sequences had a length of eight bits and were pre-defined and recurring in each macro slot.
They were assigned such that each node wins at least two ACTP runs per macro slot. Their
concrete values are given in Table 5.3 in their decimal form.

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

Va 213 156 76 103 178 45 91 57 27 30
Vb 22 189 99 71 110 155 209 59 219 73
Vc 187 188 155 66 44 79 210 23 51 201
Vd 89 14 103 245 3 100 104 198 113 33

Table 5.3: Priority assignment in the evaluation scenario of ACTP.

8ACTP’s incorporation into BiPS (Sect. 3.7.2.2) was also evaluated in a student’s project. Since the results are
similar, they are not further discussed.
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5.5.2 Experiment Results

The node-specific success rates are plotted in Fig. 5.13. In each plot, rates are shown for all
ACTP applications as function of their relative run in a macro slot, i.e., an x-axis value of 1
corresponds to the first ACTP run after synchronization. A run of ACTP is rated as success if
either the node wins correctly, i.e., if it has the highest priority and completes the transmission
of the corresponding bit sequence (plotted as dots), or if it loses correctly, i.e., if it finishes ACTP
as passive node and receives the correct bit sequence of the winner (marked with crosses). The
results show that the node-specific success rates are very similar and above 99.9%, and that
there is no big difference between nodes on the borderline of the network (Va and Vd) and nodes
in the center (Vb and Vc), which is a strong indication of successful multi-hop propagation.

Figure 5.14 aggregates the node-specific success rates to overall rates. The dots show ACTP
runs that are completely successful, i.e., where both the correct node wins and its bit sequence
is received by all other nodes without faults. The crosses additionally count all runs, in which
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Figure 5.13: Success rates of ACTP for each node and per run in a macro slot.
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Figure 5.15: Causes of faults in ACTP runs.

the correct node wins but at least one losing node detects a faulty bit sequence. Though these
runs are dangerous w.r.t. ACTP’s support of value transfer, they are still correct w.r.t. arbitra-
tion. In sum, the total success rate is 99.94% and arbitrations are successful in 99.98% of all
applications of ACTP. The figure – as well as Fig. 5.13 – additionally demonstrates that the con-
figured resynchronization intervals are sufficient and that there is no deterioration of success
rates during macro slots despite increasing synchronization offset.

In total, we observed 37 out of 180,000 ACTP runs with wrong or multiple winners and
67 runs with minor faults. To investigate these faults in more detail, we count the number
of false positives and negatives that lead to the faulty outcome. The results are presented in
Fig. 5.15 and show that false negatives occur more often than false positives (67 vs. 37). A
possible reason for false positives can be found in the violation of the single-network property
and the misinterpretation of interference as black burst. The existence of external interference
is also a possible explanation of false negatives, since it can deteriorate and prolong medium
occupancies. The fact that 137 of such invalid medium occupancies were observed and filtered
during ACTP runs of the experiment confirms this assumption.

5.6 Discussion

In this chapter, results of experiments are presented to provide a proof-of-concept of black
bursts and ACTP. The chapter, particularly, demonstrates that the implementations of black
bursts and ACTP do not show any indication of destructive interference of overlapping black
burst transmissions. Thereby, it provides a practical verification of a key property of the colli-
sion resistance of black bursts. Results of outdoor experiments in Sect. 5.3 furthermore point out
that SNRs of black bursts become even larger with increasing number of transmitters, which
argues for additive interference and confirms previous experiments [KdI07].

While experiments with success rates of 99.9% and more demonstrate the feasibility of black
bursts and ACTP, they also reveal that the CC 2420 transceiver is indeed adequate to serve as
proof-of-concept platform but inappropriate for efficient implementations of black bursts. The
reasons for this are the large delays of the transceiver – e.g., regarding switching to transmis-
sion/reception mode and detection of medium state changes – and its operation in the 2.4 GHz
ISM band. In particular, the ISM band can state a problem and requires special attention, since
it is overcrowded by WLAN and Bluetooth traffic and impedes compliance with the single-
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network property. In this regard, outdoor experiments (Sect. 5.3), where the single-network
property was satisfied, substantiate that success rates of 100% are achievable for adequate dis-
tances and that false positives can be avoided entirely. Experiments in indoor office environ-
ments (Sect. 5.2 and Sect. 5.5) illustrate consequences of external interference in terms of false
positives and false negatives. In summary, this chapter stresses the importance of the single-
network property and argues for a controlled setup with dedicated communication channels
to reliably run black burst-based protocols.

The presented experiments were conducted during different stages of development and re-
veal a continuous enhancement of the implementation. In this regard, the comparatively bad
results from Sect. 5.2 can – besides the violation of the single-network property – also be ex-
plained by identical synchronization words, which can lead to an adulterated view of the state
of the medium, since the detection of black bursts as regular MAC frames is not prevented. In
later experiments, transceivers were configured with random synchronization words to elimi-
nate this problem and to guarantee the detection of black bursts as medium occupancy only.

Though most false positives and false negatives could be traced back to external interference,
Sect. 5.4 – and particularly Fig. 5.11 – identify a different problem for black bursts, which is
not caused by external interference but occurs due to weak links between sender and receiver
and variability of signal strengths. These boundary conditions can lead to situations, in which
the CC 2420 transceiver requires more than eight transmission symbols before its RSSI value
exceeds the CCA threshold. As consequence, black bursts are detected later than dmaxCCA =

128µs, which should actually be the maximal delay to detect any transmission. Since exceeding
dmaxCCA impedes guarantees regarding the association of a black burst with its actual start time,
it states a great threat for ACTP as well as BBS, which could no longer provide any upper
bound on the maximal synchronization offset. Thus, such situations must be avoided at any
price, which is in most cases possible by filtering transmissions whose maximal RSS is not
significantly larger than the CCA threshold.

This chapter is complemented by a proof-of-concept of ACTP, which validates the protocol’s
implementation and provides a practical proof of its timing constraints that were derived in
Sect. 3.2.2. By evaluating ACTP in a full setup with BBS and macro slots, this section also
demonstrates that realizations of wireless multi-hop binary countdown protocols that are com-
pliant with duty cycling and other MAC protocols are possible. Though the topology was
small-scale and external interference was not excluded, the experiment was sufficient to show
ACTP’s feasibility and mode of operation w.r.t. deterministic medium arbitration and value
transfer. Success rates of > 99.9% could furthermore demonstrate a high predictability even in
environments with invalid single-network property.



6. CHAPTER

Related Work: Busy Tone and Binary
Countdown Protocols

In the literature, there are a plenty of medium arbitration protocols. Some of them are devised
for general purpose applications, others tailored for specific application domains like WSNs.
Due to the energy constraints of nodes, most of WSN-specific protocols target first of all energy
efficiency and duty cycling. In this regard, prominent examples of synchronized duty cycling
protocols are S-MAC [YHE02, YHE04] and RMAC [DSJ07]. Since these protocols come with low
predictability, i.e., they can neither guarantee delay bounds nor that a particular station wins
the contest, they are not in the focus of this chapter. Instead, the following survey is limited
to protocols that apply some kind of collision-resistant arbitration scheme and can be divided
into two categories: Busy tone protocols encoding the priority of a station in the duration of a
buzz signal and binary countdown protocols resolving contest bit-wise. All of the discussed pro-
tocols are distributed protocols, which do not rely on central coordinators organizing medium
access. Some of them assume that the network is without hidden stations. However, in the cor-
responding context, the definition of no hidden station is less stringent and is already satisfied if
the sum of communication and interference range is smaller than the sensing range [BPC+07].

The rest of this chapter is structured as follows: In Sect. 6.1, representatives of busy tone
protocols are discussed. Section 6.2 outlines examples of binary countdown protocols. Finally,
Sect. 6.3 compares the presented protocols and shows differences to ACTP.

6.1 Busy Tone Protocols: The Origin of Black Bursts

The term black burst is first mentioned in [SK96] and is defined as pulse of energy of specified
duration. Consequently, a black burst contains no further payload besides the start and end
time of its transmission. Different from the usage of black bursts in the context of ACTP and
BBS, black bursts may differ in length in their original definition.

In [SK96], black bursts build the foundation of a distributed medium access scheme that is
referred to as black burst arbitration in the following. The general mode of operation of black
burst arbitration is as follows: Each station intending to send a data frame first waits until the
medium is idle. Then, it starts to jam the channel with a black burst, where the duration of the
black burst reflects the priority of the transmission. After the end of its black burst transmission,
the station listens to the medium to detect black bursts of other stations. If the station does not
sense another transmission, it is allowed to send its data frame. Thereby, the node sending the
longest black burst wins. If a station detects a busy medium after its black burst transmission,
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it defers its data transmission and waits until the medium is free again when it contends with
a new black burst.

In the literature, there are several MAC protocols adopting black burst arbitration.1 They
differ i.a. in the calculation of black burst durations, in requirements for hardware, and in as-
sumptions on the network. Some of them are presented below in more detail.

6.1.1 The First Mention of Black Bursts by Sobrinho and Krishnakumar

With the objective to guarantee collision-free transmissions of real-time traffic with bounded
delays, Sobrinho and Krishnakumar introduced black bursts as part of a medium arbitration
scheme in [SK96]. The arbitration scheme was developed as extension of IEEE 802.11 [Ins12a]
and has been extended in [SK99]. In their works, the authors distinguish between data sta-
tions, which have no real-time constraints and apply IEEE 802.11 DCF regularly, and real-time
stations with periodical communication demands with bounded medium access delays. To pri-
oritize real-time stations over data stations, different classes of Inter-Frame-Spacings (IFSs) are
introduced. To solve competition between real-time stations, black burst arbitration is applied.

Before black burst arbitration is actually used, a real-time station must first initiate a real-time
session, which is implicitly done by sending the first frame of the session with conventional
CSMA/CA of IEEE 802.11 [Ins12a]. Afterwards, subsequent frames of the session are sent in
fixed intervals with preceding black burst arbitration. In steady state and without data stations,
there is no real contention, since all real-time stations share the medium in round robin fashion.
However, due to data stations and real-time stations starting a session, the transmission of a
real-time frame can be deferred. This may afterwards result in contention between two real-
time stations, which is solved by black burst arbitration, where the duration of a black burst
is proportional to the time the node has already been waiting. Thus, the node waiting for the
longest time sends the longest black burst and wins. As result, real-time transmissions are
delayed for the duration of at most one frame transmission.

To improve efficiency, [SK99] presents an extension of the arbitration scheme that is called
chaining and enables the invitation of a station to send a data frame without further arbitration.
The paper additionally sketches the realization of real-time sessions with different transmission
intervals. Though this improves flexibility of the protocol, it introduces additional overhead to
guarantee uniqueness of black burst durations.

The presented protocol is evaluated both by simulations to compare black burst arbitration
with CSMA/CA and by detailed analyses of stability conditions, which assess whether access
delays are bounded under a given workload. Though the first frame of a real-time session
may still be delayed unboundedly, the presented arbitration process guarantees that – assum-
ing an adequate workload – frames of existing real-time sessions are sent collision-free and
with bounded delay. A disadvantage of the approach is that only multi-hop networks without
hidden stations are supported.

1Not all of them actually use the term black burst but often consider jamming signals as preambles. This term is
more common in the context of asynchronous duty cycling protocols, where preambles are sent to wake up a node.
In this regard, well-known examples with sender-based preamble transmissions are WiseMac [EHD04b, EHD04a]
and X-MAC [BYAH06].
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6.1.2 Elimination by Sieving MAC and Deadline Bursting MAC

In [PDO02], the authors present two MAC protocols with deterministic collision resolution.
They are called Elimination by Sieving (ES-DCF) and Deadline Bursting (DB-DCF). The objective
of both protocols is the provision of upper bounds on transmission delays in single-hop net-
works. To this effect, nodes are classified as real-time nodes, which execute the proposed pro-
tocols, and non-real-time nodes running regular IEEE 802.11 DCF with increased IFSs [Ins12a].
Traffic of real-time nodes is subdivided into soft- and hard-real-time traffic, where hard-real-
time traffic is prioritized.

ES-DCF consists of four phases. The first phase is called elimination phase and selects all nodes
with highest priority. This is achieved by a passive arbitration, in which a backoff is waited
that is calculated as function of the priority – thereby, also preferring hard- over soft-real-time
traffic – and urgency of the data frame. Since these two parameters are possibly identical for
several nodes, random subgrades are introduced to reduce the probability of multiple winners.
In the second phase, which is called channel acquisition phase, all winners try to perform an
RTS/CTS handshake. Since multiple winners can still exist, the handshake can fail due to
RTS frame collisions. If this is the case, the conflict is solved in a collision resolution phase by
means of a black burst arbitration, where the duration of black bursts is proportional to unique
node ids. Afterwards, the node sending the longest black burst repeats the channel acquisition
phase, whereas nodes with shorter black bursts wait until the channel becomes idle again before
repeating the collision resolution phase. If the handshake of the channel acquisition phase is finally
successful, data is transferred in a data transmission phase.

DB-DCF is very similar to ES-DCF and performs better with soft-real-time traffic but worse
with hard-real-time traffic. It, particularly, also consists of four phases, where the last three
phases are identical to ES-DCF. In the elimination phase, however, contention is solved actively
with black burst arbitration and black burst durations that depend on the urgency of the data
frame, i.e., on a relative deadline: The closer the deadline, the longer the black burst. Thus,
the most urgent nodes become winners of this phase. Since there is potentially more than one
winner, conflicts may exist, which are solved in the collision resolution phase as in ES-DCF.

Both protocols are evaluated in simulations. Implementations on hardware do not exist.
Though both protocols use RTS/CTS handshakes to address the hidden station problem, it is
questionable whether they perform well in multi-hop topologies with hidden stations, because
conflicts are only solved if conflicting nodes are in sensing range of each other.

6.1.3 A Black Burst-based MAC Protocol with Dynamic ID Assignment

In [SLWT04], a distributed MAC protocol for single-hop networks is proposed. The protocol
supports data transfer with several priority levels and adopts black burst arbitration. Its period-
ical operation cycle is subdivided into three phases: Priority classification period, ID initialization
period, and data transfer.

In the first phase, black burst arbitration is executed by each station with pending data, where
the duration of black bursts is proportional to the non-unique priority of the sending station.
Thus, all highest priority stations emerge as winner of this phase. To avoid collisions of the data
frames of the winners, their transmission order is determined in the ID initialization period.
Here, a randomized initialization protocol is incorporated to assign each winner a consecutive
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unique id. The protocol is probabilistic, fair, and based on the construction of a contention
tree, where the ids of nodes are derived from their positions in the tree. In the third phase, all
winning nodes send all their frames in round robin fashion in the order of their ids.

The protocol has been evaluated by simulations. Implementations do not exist. A drawback
of the ID initialization protocol is its inefficiency and the missing upper delay bound on its
termination. Thus, the overall protocol does not provide bounds on access delays, too.

6.1.4 Soft Real-time Chains

Soft Real-time Chains is a MAC protocol for wireless multi-hop networks without hidden sta-
tions [BPC+07]. The protocol is distributed, unsynchronized, and targets networks with tem-
porary but strong requirements for high transmission rates. It is developed as extension of
IEEE 802.15.4 [Ins11]. The eponymous term real-time chain is defined as a multi-hop data
flow and has a specified priority. Data of a real-time chain is transferred on separate channels,
whereas best effort traffic is sent with CSMA/CA on a common channel.

To setup a real-time chain, a chain open frame, which is sent on the common channel and
with preceding black burst arbitration, is sent by the source node. This frame is forwarded –
again with preceding black burst arbitration – along the route to the final destination node.2

The content of this frame comprises an index, which is increased on each hop, and the priority
of the data flow that dictates the duration of black bursts. A node receiving/sending a chain
open frame gets a temporary node id, which corresponds to the index in the chain open frame,
and is afterwards part of this particular chain until the chain is closed.

After opening a chain, all participating nodes switch to a new set of channels. Nodes with
even node id are so-called one channel nodes and send/receive on the same channel. Other nodes
are dual channel nodes and change channels in between receiving and forwarding. To improve
throughput by exploiting spatial reuse, a chain can allocate several channels such that the same
channel is not reused by neighbored nodes. Data of a real-time chain is transferred after black
burst arbitration, where the duration of black bursts depends on the priority of the data flow
and the position of the sending node in the chain, and is acknowledged with ACK frames.
Thereby, forwarding of frames gets priority over new frames.

The protocol’s implementation is evaluated on MICAz nodes [MEMarb] and supports up to
four flow priority levels. Since the protocol is fully distributed and unsynchronized, problems
arise if several chains are opened at the same time or if there are conflicting chains in neigh-
borhood of each other. To alleviate the second problem, the authors propose an extension, in
which chains can be reopened with a different set of channels.

6.1.5 Backoff Preamble (Sequential) MAC

In [KKS09, Kle11, KB11, KB12, Kle12] and [Kle10, Sect. 2.5], Klein et al. present two new MAC
protocols – called Backoff Preamble MAC (BP-MAC) and Backoff Preamble Sequential MAC
(BPS-MAC) – for unsynchronized single-hop networks. Their objective is the prevention of
collisions in case of correlated, event-driven, and bursty traffic, which is insufficiently handled
by common CSMA/CA-based MAC protocols of WSNs due to large CCA delays.

2The authors assume the availability of an adequate routing protocol, but do not discuss this topic further.
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Medium arbitration with BP-MAC is based on black burst arbitration, where the duration
of black bursts, which are called backoff preambles by the authors, is calculated randomly
[KKS09]. Each black burst is always a multiple of so-called slots, whose duration must be suf-
ficient to enable the detection of an occupied medium. Since several stations may compute
the same number of slots, uniqueness of winners is not guaranteed, thereby causing collisions
of subsequent data frame transmissions. Due to unsynchronized arbitration starts and blind
periods during transceiver switchings, collisions may also arise if stations use black bursts of
similar but different length. BP-MAC is analyzed in a probability analysis and compared with
CSMA/CA by simulations.

In [Kle10, Sect. 2.5] and [Kle11], BPS-MAC is presented as extension of BP-MAC to reduce
collision probabilities. The extension consists of the sequential elimination of contention by
applying several shorter black burst arbitrations, where the concrete number has to be deter-
mined as a trade-off between medium access delay and collision probability. In addition, the
author discusses the impact of the duration calculation of blacks burst on the probability of
collisions. In this regard, it is shown that calculating the duration of black bursts by random
functions with non-uniform distributions achieves less collisions if more than two nodes com-
pete. The derivation of the best distribution, however, requires exact knowledge on the number
of competing nodes. Otherwise, the number of collisions increases. BPS-MAC is evaluated by
simulations in [KB12, Kle12] and compared to the non-beacon mode of IEEE 802.15.4 [Ins11].

An enhancement of BPS-MAC to support QoS is presented in [KB11] and works as follows:
In the first arbitration, the durations of black bursts are no longer calculated randomly but
priority-based. In this regard, several static and dynamic priority metrics like energy resources,
node ids, and buffer states are discussed. If priorities are not unique, further black burst arbitra-
tions are scheduled subsequently to resolve remaining contention in a probabilistic way. BPS-
MAC with priorities is evaluated in simulations and compared to contention-based medium
access of IEEE 802.15.4 [Ins11]. With the results, the authors could show that their protocol
decreases delays of high-priority transmissions during bursty traffic situations significantly.

BP(S)-MAC is only designed for single-hop networks or multi-hop networks without hidden
stations. Because the protocol is unsynchronized and preambles are used for medium arbitra-
tion but not to wake up receivers, measures to save energy are hardly compatible. Though some
implementation aspects are discussed in [Kle12], no complete implementations of BP-MAC or
BPS-MAC are mentioned, and it is questionable whether the used timings are sufficient. In
particular, the slot duration, which must be sufficient to switch to receive mode and to detect
the correct medium state, is set to 128 µs in simulations. This is, however, only the CCA delay
of the CC 2420 transceiver, which is not enough for this purpose as proven in [Eng13].3

3In Sect. 2.5.1 in [Kle10], it is stated that the “slot duration has to be chosen such that a node is able to switch
the transceiver mode and to detect a busy medium within a single slot duration”. However, this does not reflect the
slot duration in simulations (128 µs) and is contradictory to other descriptions of the protocol.
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6.1.6 A Black Burst-Based Protocol for Vehicular Networks

In [KEÖ07], Korkmaz et al. present two broadcast protocols for wireless multi-hop networks,
which are called Ad hoc Multi-hop Broadcast (AMB) and Urban Multi-hop Broadcast (UMB). They
are position-based and designed for IEEE 802.11-based [Ins12a] vehicular networks, in which
nodes are not aware of the network topology but know their position by GPS. The objective
of the protocols is to quickly propagate new information into the network. For this purpose,
measures are introduced to solve the hidden station problem and to improve efficiency of multi-
hop communication.

To distribute new data, both protocols apply directional broadcasts. For this purpose, a node
with new information transmits a Request-To-Broadcast (RTB) frame containing the duration of
the upcoming data transfer, its position, and the intended broadcast direction. RTB frames are
sent with conventional CSMA/CA. When receiving an RTB, all nodes in the intended broadcast
direction calculate the distance to the sender of the RTB based on the GPS-based position infor-
mation and start a black burst arbitration. Thus, different from previous applications of black
burst arbitration, black bursts are now sent by possible receivers. Their duration is propor-
tional to the distance, such that nodes that are furthest from the sender win and are afterwards
allowed to send a Clear-To-Broadcast (CTB) frame. Since there can be more than one winner,
collisions of CTB frames can occur, which are detected by the sender of the RTB frame by ob-
serving a busy medium without frame reception. In this case, the sender of the RTB frame
sends a new RTB frame and a new black burst arbitration starts, in which only winners of the
previous run participate and distances are separated into smaller granularities to increase the
probability of a unique winner. This process is repeated until there is only one winner or a max-
imal number of attempts is exceeded. After the sender of the RTB frame receives a CTB frame
correctly, it broadcasts its information along with the id of the winner, which is afterwards
responsible for broadcasting the information further.

The protocols are evaluated by simulations, where they outperform existing IEEE 802.11-
based protocols in terms of reliability and efficiency. Drawbacks are the need to arbitrate hop-
by-hop and missing guarantees regarding delays due to ambiguous priorities.
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6.2 Binary Countdown Protocols

Instead of encoding priorities in the duration of busy tones, binary countdown protocols con-
vert priorities into binary numbers of fixed length and send them bit-by-bit. For this pur-
pose, bits are classified as dominant bits that are implemented by emitting short signals of
constant length and recessive bits, which are realized by the absence of a transmission. Thus,
stations sending recessively can listen on the medium to detect dominant bits and stop pro-
cessing their own bit sequence if a dominant bit is detected. As result, nodes sending the
numerically greatest sequence arise as winners among all nodes in sensing range. In most
cases, binary countdown protocols are adopted as arbitration protocol to resolve contest and
to enable collision-free data transmissions subsequently. In the following, the survey presents
some wireless representatives of binary countdown protocols, which differ in assumptions on
the network topology and the creation of binary numbers.

6.2.1 CSMA/IC and BROADEN

To solve contention in multi-hop networks without hidden stations, You et al. present the
Carrier Sense Media Access protocol with ID Countdown (CSMA/IC) [YYH03b], which adopts the
binary countdown principle and provides priority-based medium access.

CSMA/IC divides time into periodical time frames, which are called competing units. They
are further subdivided into four phases: A medium sensing slot, a beacon sending slot, a binary
competing phase, and a data sending period. In the beacon sending slot, local synchronization is
established among neighbors by the transmission of beacons, which are sent by all nodes in a
probabilistic way. In the binary competing phase, the binary countdown protocol is executed
with unique binary numbers comprising two parts: A priority (e.g., based on the type of the
pending data frame) and a uniqueness part (e.g., the node id). Dominant signals – called buzz
signals – encode binary 1s; binary 0s are encoded recessively. The derivation of bit durations is
only sketched and considers maximum propagation, switching, and sensing delays.

Since beacons are sent randomly and may suffer from collisions, there is no upper bound on
synchronization offset. To avoid these problems, the authors argue for external synchronization
mechanisms like GPS, which is not discussed in detail. CSMA/IC was evaluated in comparison
simulations with the CSMA/CA-based arbitration of IEEE 802.11 [Ins12a].

CSMA/IC has been incorporated into BROADEN (Binary countdown – RTS – Object-to-send
(OTS) – Agree-to-send (ATS) – Disagree-to-send (DTS) – Ensure-to-send (ETS) – Neaten-to-
send (NTS)) [YYH03a]. On a control channel, BROADEN subdivides time into time frames as
in CSMA/IC and applies a binary countdown protocol before frame transmissions. Transmis-
sions of data frames occur on separate data channels. To avoid collisions on these channels,
BROADEN introduces a couple of frame types that are sent on the control channel to nego-
tiate transmissions on a data channel. By maintaining tables with scheduled transmissions,
BROADEN gathers information on the neighborhood of a node, which is evaluated to negoti-
ate new transmission schedules and to reduce the exposed station problem. As further measure
to improve spatial reuse, the transmission power is adjusted according to the distance to the
receiver.
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A general drawback of BROADEN is its very high overhead: Besides maintaining state tables
for nearby receptions and transmissions, data transmissions require at least four preceding con-
trol frames (RTS, ATS, ETS, and NTS). Because CSMA/IC is adopted unaltered on the control
channel, all drawbacks of CSMA/IC hold for BROADEN, too – in particular, regarding syn-
chronization. Though BROADEN alleviates the exposed station problem on the data channel,
the problem still exists on the control channel. BROADEN is also evaluated in simulations and
compared to IEEE 802.11 [Ins12a]. The results show that BROADEN prevents collisions and
improves delays and throughput in heavy load situations.

6.2.2 BitMAC

BitMAC is a very comprehensive MAC protocol for multi-hop WSNs with single sinks and
has been proposed by Ringwald and Römer in [RR05]. It comprises TDMA elements to mul-
tiplex communication between parents and children as well as FDMA to dissolve interference
between neighbored subtrees. Synchronization required for TDMA is achieved by an internal
tick synchronization protocol, which achieves deterministic accuracy by the collision-protected
encoding of bits. Besides synchronization, many other protocol parts of BitMAC also utilize
collision-protected transmissions of bit sequences and exploit the fact that useful information
can be encoded just in the presence of medium occupancy. As a result, BitMAC enables deter-
ministic up- and downlink communication in the tree topology of the network.

BitMAC is not explicitly advertised as binary countdown protocol. Instead, it introduces
several subprotocols, which perform synchronization and integer operations like OR, AND,
MIN, and MAX in a collision-protected way. But since the result of a MAX operation is iden-
tical to the outcome of the binary countdown protocol, BitMAC implicitly realizes a binary
countdown protocol, which is, for instance, used to determine the parent node of a child and to
allocate channels to different subtrees. Compared to other binary countdown protocols, a dis-
tinctive feature of BitMAC is the repetition of received bits by parent nodes. Thus, the radius
of the binary countdown protocol amounts to two sensing range hops and children of the same
parent do not need to be in sensing range of each other.

Parts of BitMAC have been implemented with the BTnode3 platform [Tex] and evaluated in
experiments. Further delays have been derived by analysis. Besides its deterministic commu-
nication, further advantages of BitMAC comprise its internal synchronization and support for
duty cycling. An inherent drawback is its limitation to tree structures.

6.2.3 SYNchronized MAC

The SYNchronized MAC (SYN-MAC) protocol also adopts the binary countdown principle
and has been proposed in [WUT05, PW07]. Its objective is the reduction of collisions, which are
observed with IEEE 802.11 [Ins12a] in multi-hop networks with hidden stations. The protocol
requires synchronization among all nodes, which is, however, not further discussed by the
authors. Instead, they refer to external solutions like GPS [US 08] or the cellular systems.

SYN-MAC subdivides time into three periodical intervals: Contention interval, hidden station
elimination interval, and data interval. The first two intervals solve contention among senders,
whereas data frames are exchanged in the third interval.
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In the contention interval, a binary countdown protocol is applied. For this purpose, the
interval is subdivided into so-called contention slots, where the protocol processes one bit in
each slot. Binary numbers are either generated randomly to improve fairness or from priority
classes to support QoS. Since they are not necessarily unique, several winners can emerge in
the contention interval. This problem is, however, neglected under the assumption of suffi-
ciently large binary numbers. Different from other binary countdown protocols, dominant bits
are not just sent as buzz signals but as regular MAC frames (referred to as contention signals)
and contain the MAC address of the receiver as payload. This information can be evaluated by
receivers if no collision occurs. Thus, a node reading its MAC address in a received contention
signal in the i-th contention slot is aware of its receiver role and generates a so-called contention
bit mask, where the i-th bit is 1. Afterwards, it ignores further contention signals in this con-
tention interval. A node receiving a contention signal and reading a different MAC address
stops participating in the current contention – both as potential sender and receiver.

In the hidden station elimination interval, all receivers that have received a contention signal
correctly send their generated bit mask in so-called hidden station clear messages (HCMs). All
potential senders in range receiving this message compute the binary AND of the received bit
mask and the binary number, which they sent during the contention interval. If the result is
different from 0, they become transmitters in the subsequent data interval. Otherwise, they are
aware of being beaten.

An enhancement of SYN-MAC w.r.t. throughput is presented in [PW07] and requires knowl-
edge about the neighborhood of nodes. Instead of always stopping if a contention signal with a
different MAC address is received, a node first checks whether the read MAC address belongs
to a node in the direct neighborhood. If this is not the case, the node continues contention,
thereby alleviating the exposed station problem.

The protocol is evaluated by numerical analysis and simulations [WUT05, PW07] w.r.t. col-
lision probability, delay, and throughput. Implementations do not exist. A drawback of SYN-
MAC is the need for extra hardware to establish synchronization. Furthermore, network re-
sources are potentially wasted if data frames do not fill in data intervals completely or if con-
tention intervals do not produce winners due to identical binary numbers. For that reason, no
upper delay bounds can be provided.

6.2.4 Binary Countdown MAC

Binary Countdown MAC (BCMAC) is a cluster-based MAC protocol for WSNs [KBK07]. Its
main objective is the reduction of energy consumption, in particular, regarding idle listening
and collisions [YHE02]. The protocol is an extension of the cluster-based MAC protocol BMA
(Bit-Map Assisted MAC) and incorporates a binary countdown protocol to solve contention of
intra-cluster communication. The behavior of BCMAC consists of two recurring phases: In a
setup phase, cluster heads and followers are determined based on the amount of energy that
is required for communication within the cluster. This phase is similar to BMA. The second
phase (steady-state phase) comprises event-driven communication within the cluster. To resolve
contention among nodes of the same cluster before data transfer, a binary countdown protocol
is executed, where bit sequences are derived from unique node identifiers. Thus, collisions
within the same cluster are avoided entirely. Since nodes without data to send can switch their
transceiver off, energy waste due to idle listening is reduced.
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BCMAC applies the principle of binary countdown in a simple and – by using node iden-
tifiers as priorities – collision-free variant, and transfers it to the context of clustering. As a
consequence, it requires that all nodes of a cluster are in sensing range of each other. Conflicts
between neighbored clusters are not considered but are implicitly solved due to unique node
identifiers. Synchronization, which is required to separate bit times of the binary countdown
protocol and to synchronize contest of different clusters, is not discussed. BCMAC is analyzed
regarding energy consumption. Implementations do not exist.

6.2.5 Wireless-Dominance

Wireless-Dominance (WiDom) is a binary countdown protocol for sporadic message streams
with static priorities [AT05] and is strongly motivated by CAN [Int04]. Enhancements, spe-
cializations, and applications have been presented in numerous publications [PAT06, PATR07a,
PAT07, PATC09, PGAT09, VA10, VA11, APTG11]. Initially, WiDom comes with an internal de-
centralized synchronization protocol [AT05], but variants with external or master-based syn-
chronization exist as well [PGAT09]. Variants of WiDom have been proposed for single-hop
networks (e.g., [AT05]) and multi-hop networks (e.g., [PATR07a]). The base cycle of WiDom
consists of three phases: A synchronization phase, a tournament phase to determine the node with
the highest priority by executing a binary countdown protocol, and the data transfer phase. Sim-
ilar to CAN, WiDom uses message-based priorities and encodes low numbers with high prior-
ities, i.e., 0s are dominant and 1s recessive.

In the first paper [AT05], the protocol is introduced without explicit name and for single-hop
networks. The name WiDom is first mentioned in [PAT06], where the implementation of the
protocol’s single-hop variant is presented, which is based on TinyOS4 and the MICAz plat-
form [MEMarb]. Similar to the Imote 2 [MEMara], the MICAz is equipped with TI’s CC 2420
transceiver [Tex07] (see also Sect. A.2). But different from our implementation of black bursts
by irregular MAC frames, WiDom realizes dominant bits with unmodulated carriers, which
are supported by the test mode of the transceiver. Details on the implementation of WiDom’s
multi-hop variant are presented in [PATR07a]. It is developed with Nano-RK5 and supports
the wireless sensor platforms MICAz and Firefly6. In [PGAT09, VA11], a more efficient im-
plementation of WiDom is introduced, which is based on two additional hardware extension
boards (so-called WiFLEX boards) for MICAz and FireFly nodes. They enable faster tourna-
ment phases and are the foundation of WiDom’s variant with master-based synchronization
(also called slotted WiDom [VA11]).

An extensive and summarizing work about WiDom’s single-hop variant can be found in
[PAT07]. Besides describing mode of operation, implementation, and protocol timings, this
paper also provides a response time analysis, which can verify the timely transmission of mes-
sages as function of workload. Furthermore, it presents results of experiments with 99.99% suc-
cess rates. An interesting fact is that in some cases, the response times are higher in experiments
than the theoretical bounds. The authors could trace this discrepancy back to false positives that
were caused by noise. As countermeasure against false negatives, a further single-hop variant
of WiDom is devised [PATC09], in which dominant bits are relayed by receiving nodes.

4http://www.tinyos.net
5http://www.nanork.org/
6http://www.ece.cmu.edu/firefly/

http://www.tinyos.net
http://www.nanork.org/
http://www.ece.cmu.edu/firefly/
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In [PATR07a, PATR07b], WiDom is extended to solve hidden station problems in multi-hop
networks. The extension is based on the network-wide forwarding of synchronization pulses
and the two-hop propagation of priority bits. Data transfer is still one hop. Due to arbitration
radii of two hops, this variant of WiDom allows multiple simultaneous winners, but also suffers
from multi-hop competing problems (see Sect. 3.5).

Applications of WiDom – like the distributed calculation of aggregated values (e.g., MIN,
MAX) – are presented in [PGAT09] for single- and multi-hop networks. While these calcula-
tions are straightforward in single-hop networks, a cluster-based approach is adopted in multi-
hop networks, where values are first determined within clusters and then sent to a central
master. A further single-hop application of WiDom is in association with the interpolation of
sensor readings [APTG11]. Here, WiDom is applied to determine local extrema of differences
between interpolated sensor values and actual sensor readings. This application has similari-
ties to the application of ACTP to TOD (see Sect. 4.2.2), where also priorities are derived from
dynamic error values.

The presentation of WiDom is very thorough and extensive, and also several implementa-
tions, simulations with probability models, and experimental evaluations exist. A drawback of
WiDom is the limitation of its arbitration radius to one and two hops, respectively, thereby re-
quiring hop-by-hop arbitration if data must be sent across longer routes. Furthermore, synchro-
nization overhead is high due to very frequent and inefficient resynchronizations. Extended
variants of WiDom with WiFLEX boards indeed reduce this overhead, yet they introduce costs
of additional hardware and still require resynchronization very frequently. Another drawback
is the missing support of duty cycling due to WiDom’s event-driven operation mode, which
prohibits the switching off of transceivers in periods without transmissions. A further draw-
back is regarding the efficiency of WiDom’s implementations: In [PAT06], for instance, carriers
of dominant bits have a duration of 486 µs, since the authors observed a high rate of false nega-
tives with smaller pulses. Because we also obtained very good results with the same transceiver
and shorter pulses (see Chapter. 5), the necessity of such large pulse durations is somehow ir-
reproducible and has maybe its origins in additional overhead of the used OS (TinyOS).

6.2.6 The Binary Priority Countdown Protocol

The Binary Priority Countdown (BPC) protocol is a MAC protocol for wireless single-hop net-
works [KOK13b]. In BPC, arbitration, which is called contention resolution period, consists of
one to many contention intervals, each running a binary countdown protocol with priorities of
N bits length. Priorities are calculated randomly and once per contention resolution period,
where lower values represent higher priorities. Because the arbitration may consist of several
contention intervals, the priority space is very flexible and usually larger than {0, . . . ,2N − 1}.

Contention resolution periods work as follows: Stations with priorities larger than 2N − 1
stay passive in the current contention interval, but reduce their priority by 2N − 1 if they do not
detect any transmission. Other stations or stations, which decreased their priority in previous
contention intervals correspondingly, participate actively by running the binary countdown
protocol with the two’s complement of their priority. After winning the contest, a station is
allowed to transmit a data frame. Because priorities are calculated randomly, collisions of data
frames can occur, which are detected by the absence of ACK frames and cause doubling the
priority space. For a station losing the contest, two alternative strategies are opposed: Either
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discarding the priority and calculating a new value, or reducing the own priority by the priority
of the winner. To shorten the duration of contention resolution phases, the authors present an
optimization that is based on the fact that a data frame can additionally serve as dominant
bit. Thus, a station, which is aware of winning the contest prematurely7, can bring its data
transmission forward to additionally utilize it as dominant bit.

The protocol and its alternatives are evaluated by analyses and simulations with ns-2. Syn-
chronization, which is required to start contention intervals simultaneously, is not discussed.
A big advantage of BPC over other binary countdown protocols is its dynamic priority space.

In [KOK13a], an enhancement of BPC, called Contention Overhead - Adaptive Binary Priority
Countdown (CO-ABPC), is presented, changing two parts of BPC: First, stations always calculate
a new priority if they have lost more than k consecutive times. Thereby, the so-called problem
of collision memory is decreased. Second, arbitration overhead is reduced by determining the
optimal priority space and by using this value after collisions. To determine this value, the
current contention overhead in the network is evaluated.

6.3 Discussion

Though busy tone and binary countdown protocols differ in their mode of operation, their ob-
jective and outcome are similar. In particular, both protocol classes provide medium arbitration
with deterministic result as long as priorities are unique. Basically, even value transfer is pos-
sible with both, yet limitations due to multi-hop competing problems have to be considered.

The most important difference between both protocol families lies in the encoding of prior-
ities: For busy tone protocols, priorities are encoded in the duration of a buzz signal. Under
the assumption of uniform length distributions, the average arbitration delay is thereby half
as large as the worst-case delay. Binary countdown protocols transmit binary sequences and –
with the exception of BPC – achieve identical average and worst-case delays. As further dif-
ference, delays with busy tone protocols increase linearly with increasing priorities, whereas
the increase is logarithmic with binary countdown protocols. Though binary countdown pro-
tocols seem to be more efficient at first glance due to the more compact encoding of priorities,
it has to be considered that they may suffer from the frequent switching of the transceiver’s
mode. Particularly, with typical wireless sensor nodes, the resulting delays can be very high.
Thus, no universal statement is possible and busy tone protocols may even outperform binary
countdown protocols if the priority space is small.

Independent of their category, the discussed protocols differ in following aspects:

• Synchronization. Though both busy tone protocols and binary countdown protocols
require synchronized starts, synchronization is, in general, more important for binary
countdown protocols, since nodes must assign a detected medium occupancy to a bit po-
sition unambiguously. With busy tone protocols, the start of the buzz signal can establish
on-demand synchronization implicitly (see e.g., BP(S)-MAC). Some of the discussed pro-
tocols – like WiDom and CSMA/IC – provide internal synchronization, whereas others
like SYN-MAC rely on an external synchronization source like GPS. Protocols with multi-

7This is, for instance, the case, if the station is still in contest after the second to last bit and its last bit is dominant.
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hop support furthermore vary in the range of synchronization, which can either be local
(CSMA/IC) or network-wide (BitMAC).

• Priorities and guarantees. By assigning unique priorities, many of the discussed proto-
cols guarantee unique winners. However, there are also other protocols like SYN-MAC,
BPC, and BP(S)-MAC, which generate priorities randomly and can consequently not give
any guarantee. Protocols with unique winners differ in the derivation of priorities: While
some protocols (e.g., ES-DCF or BCMAC) use node ids, others (like WiDom) derive prior-
ities from message types. CSMA/IC and BROADEN incorporate even both: Non-unique
message priorities and node ids to break ties.

• Considered topologies and network models. Many outlined protocols consider either
single-hop networks or multi-hop networks without hidden stations. Multi-hop net-
works with hidden stations are only supported by some protocols like WiDom, BitMAC,
and SYN-MAC. Though these protocols can deal with hidden stations, their arbitration
radius is limited to one or two hops. In this regard, limiting the arbitration radius does
usually not produce a network-wide maximal number of winners due to multi-hop com-
peting problems (see Sect. 3.5).

• Traffic pattern. A further distinctive feature is the addressed traffic pattern. BitMAC, for
instance, applies binary countdown only a few times during network setup. Other proto-
cols like the protocol of Sobrinho and Krishnakumar can only deal with strong periodical
traffic, whereas others like WiDom target sporadic traffic.

• Application domain. The protocols are often advocated as an alternative for IEEE 802.11
DCF or other CSMA/CA-based arbitration protocols. Thus, the main application of them
is medium arbitration. Only a few (e.g., BitMAC and WiDom) actually address collision-
protected value transfer and data aggregation.

Different from ACTP, all outlined protocols only support arbitration with one or two hop
radius. Hence, subsequent data transfer is limited to one hop and several arbitrations are re-
quired if data has to be transmitted over several hops. By incorporating ACTP into macro slots
with the internal synchronization protocol BBS, ACTP demands no additional hardware and
has a lower synchronization overhead than other protocols with internal synchronization (like
WiDom or CSMA/IC), which enforce (re-)synchronization before each arbitration. Though
also other protocols like WiDom and BP(S)-MAC address sensor networks, these protocols are
– different from ACTP – not compliant with duty cycling. A summary and qualitative compar-
ison can be found in Table 6.1, where w.r.t. WiDom, the comparison is based on the protocol’s
variant without extension boards.

Besides their common origin as binary countdown protocol and their realization with the
same transceiver, further commonalities exist between ACTP and WiDom regarding their target
applications. In this regard, an example can be found in [PGAT09], where WiDom is – similar to
ACTP’s application to TOD (see Sect. 4.2.2) – applied with priorities that are derived from error
values. In both applications, the protocols realize a MEF message scheduling strategy, yet the
utilization of the communicated error values is different (monitoring of a physical environment
vs. input of a control algorithm).
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PART II

SDL REAL-TIME TASKS: DESIGN,
IMPLEMENTATION, AND EVALUATION

The biggest challenge in the development of a real-time system is the timely production of
correct results. Thus, timeliness is a fundamental requirement for real-time systems and distin-
guishes them from other types of systems. In some real-time systems, the too late delivery of a
result is synonymous with the absence of the result and can have – depending on the concrete
scenario – far-reaching implications. In this regard, real-time systems are classified either as
hard real-time systems, where the miss of a deadline can have a catastrophic outcome, or soft
real-time systems, which can tolerate time constraint violations to some degree [Liu00]. To meet
the requirements of real-time systems, it is not sufficient to use just “very fast” hardware. In-
stead, the fulfillment of time constraints has to be omnipresent during the entire development
process and includes the selection of suitable hardware, adequate scheduling and load control,
and time analyses of the system.

Though the SDL standard advertises SDL as language for real-time systems [Int12c], projects
with SDL have shown that the language is indeed well-suited for the design of such systems,
but badly performs in implementations that are generated from the specification automati-
cally. Referring to this, examples can be found in [BSP11], where different manual and model-
driven IEEE 802.15.4 [Ins11] implementations are compared, and in [BCGM14], where an SDL
implementation of a synchronization and TDMA-based protocol is evaluated against a man-
ual implementation. In both examples, it is not only shown that manual implementations are
more efficient, but it is also demonstrated that SDL implementations are significantly less pre-
dictable. The differences between SDL implementations and manual implementations can be
traced back to the gap between SDL’s view of a perfect world with unlimited resources and
concurrency, and the properties of the real world with limited memory and processing units.
Here, the biggest gap particularly arises w.r.t. the scheduling of the SDL system, where the
strongly concurrent execution model of SDL has to be serialized by the implementation.

This part of the thesis presents a new approach to deal with the mismatch between SDL’s
perfect world and the real world, and to improve the predictability of SDL implementations.
For this purpose, real-time tasks [Kop97], which are a concept of real-time systems to structure
a system and its execution, are transferred to SDL and formally incorporated into the syntax
and semantics of the language. To furthermore eliminate the scheduling nondeterminism of
SDL implementations, a priority-based extension of SDL’s execution model is proposed on the
basis of SDL real-time tasks and implemented in a novel scheduling strategy for SDL systems.

Though the objective of SDL real-time tasks is the improvement of the applicability of SDL
for real-time systems, further considerations are necessary to actually use SDL for (hard) real-
time systems. In particular, this thesis does not propose new analytical methods to derive
worst-case execution times (WCETs) of SDL real-time tasks and to perform schedulability tests.
Instead, it presents results of experimental evaluations to demonstrate the practical benefits of
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the presented language extensions. While such evaluations are sufficient to compare the new
approach with state-of-the-practice solutions, to quantify the benefits, and to derive probabilis-
tic WCETs, they are still purely statistical and, therefore, inadequate if deterministic guarantees
regarding delays and runtimes are required.

Contributions

To improve SDL’s applicability in real-time systems, language extensions are required to incor-
porate an adequate priority-based execution model. With SDL real-time tasks, such extensions
have been developed, syntactically and semantically integrated into the language, and evalu-
ated. In detail, the following contributions are presented in this part of the thesis:

• The adoption of real-time tasks [Kop97] demonstrates the applicability of an approved
concept from real-time systems in SDL. In particular, formal definitions of real-time tasks
are given in the context of SDL, and incorporated into SDL’s syntax and semantics. For
this purpose, a distinction between code unit and execution unit is introduced.

• By introducing distributed SDL real-time tasks, the concept of real-time tasks is extended
to accommodate SDL’s application in distributed systems and protocol engineering.

• Together with SDL real-time tasks, a new priority-based execution model is introduced
in the formal semantics of SDL that outperforms existing prioritization measures like
signal priorities and priority inputs. Different from existing measures, priorities in SDL
real-time tasks are dynamically associated with transition executions and not statically
assigned to structural elements of an SDL specification.

• The design and implementation of a new scheduling strategy – called task scheduling – is
presented, which implements the priority-based execution model of SDL real-time tasks
to order transition executions at runtime. The resulting execution order is dynamically
created and orthogonal to SDL systems’ static structure of SDL processes. As further dif-
ference from prioritization approaches of existing SDL tools, task scheduling serializes
the concurrency of SDL systems without relying on a specific (real-time) operating sys-
tem.

• The new scheduling strategy is integrated into an existing scheduling framework to en-
able its use in scheduling-aware system specifications, where the designer can select and
configure a desired scheduling strategy from within an SDL specification.

• New SDL features are proposed to suspend SDL real-time tasks in a way that is transpar-
ent and influenceable by the system designer. Thereby, load of a system becomes better
controllable and delays of critical transition executions can be decreased further.

• By implementing SDL real-time tasks in an entire SDL tool chain, it is shown that the
approach is compliant with the model-driven development process SDL-MDD [Got07].
It is furthermore demonstrated that priorities of SDL real-time tasks are well-suited to
guide the automatic transformation of SDL specifications to implementations and that –
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different from state-of-the-practice approaches – no additional implementation phase and
implementation-specific priority schemes are necessary.

• Functional and performance evaluations provide evidence that SDL real-time tasks and
task scheduling have practical benefits and outperform state-of-the-practice solutions
w.r.t. the amount and predictability of WCETs.

• By a survey on related work, it is illustrated that the dynamical assignment of priorities
to transition executions and the support of distributed tasks are unique features of SDL
real-time tasks. The discussion of related work furthermore shows that there are several
orthogonal proposals, which improve SDL’s applicability in embedded real-time systems
regarding different criteria like energy consumption and can be combined gainfully.

Outline

This part of the thesis is subdivided into five chapters and supplemented by two appendices.

• Chapter 7 presents a survey of SDL; including its history, syntax, and semantics. Further-
more, the model-driven development process SDL-MDD is outlined. Though this chapter
does not contain new results, it introduces foundations for subsequent chapters.

• Chapter 8 motivates the necessity of SDL extensions for real-time systems. For this pur-
pose, shortcomings of SDL w.r.t. implementability and predictability of SDL implemen-
tations are investigated. With real-time tasks, this chapter surveys a concept from the do-
main of real-time systems to structure the design and execution of time-critical systems,
and transfers this concept to the syntax and semantics of SDL. Furthermore, language ele-
ments to suspend the execution of real-time tasks are presented. In addition, this chapter
illustrates the application of SDL real-time tasks by means of an example with parts of a
comprehensive communication protocol and relates SDL real-time tasks to existing prior-
itizing language elements of SDL.

• Chapter 9 surveys the implementation of SDL real-time tasks in a tool chain consisting
of the code generator ConTraST, the SDL runtime environment SdlRE, and the SDL en-
vironment implementation SEnF. The focus of this chapter is on a new SDL scheduling
strategy, which is part of SdlRE and has been especially devised to run SDL real-time
tasks. This chapter furthermore outlines the simulator framework FERAL and extensions
enabling functional and performance evaluations of SDL systems with the support of
hardware-in-the-loop simulations.

• Chapter 10 presents results of evaluations of SDL real-time tasks. W.r.t. their functional
evaluation, the chapter outlines an SDL test system, in which a new test category is intro-
duced for SDL real-time tasks, testing their correct creation, scheduling, and suspension.
Furthermore, performance evaluations of SDL real-time tasks are presented to provide an
experimental proof-of-concept of the practical benefits of SDL real-time tasks. The evalua-
tions realize an adaptive cruise control scenario and a system with an inverted pendulum,
and compare both delays and overhead of SDL real-time tasks and task scheduling with
state-of-the-practice scheduling solutions.
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• Chapter 11 surveys related work. Since there are actually only very few comparable
previous works, the chapter provides a broad overview and includes an outline of SDL
implementation variants and other language extensions with different objectives. Many
of the surveyed works are not competitive proposals, but can be combined with SDL
real-time tasks gainfully.

• Appendix B summarizes the incorporation of SDL real-time tasks into the formal syntax
of SDL. For this purpose, extensions of Basic SDL-2010 [Int12d] are presented.

• Appendix C presents extensions of the semantics of SDL in order to incorporate the be-
havior of SDL real-time tasks formally. The extensions are based on SDL-2000 [Int00],
since it contains the last available version of SDL’s formal ASM semantics.



7. CHAPTER

The Specification and Description Language
– An Outline

The Specification and Description Language (SDL) is a well-established and standardized lan-
guage for the development of distributed systems. This chapter is concerned with foundations
for subsequent chapters, which will introduce extensions of SDL and their implementation in a
semantically integrated tool chain. In Sect. 7.1, this chapter summarizes the SDL standard and
the history and concepts of the language. By outlining language elements of SDL, an overview
of the language’s syntax and semantics is given as well. Afterwards, a model-driven devel-
opment process with SDL as design language, called SDL-MDD, is outlined in Sect. 7.2. All
language extensions that are introduced in the following chapters of this thesis can be applied
in compliance with SDL-MDD.

7.1 SDL in a Nutshell

SDL is a formal language to describe behavior, data, and structure of reactive distributed sys-
tems [Int12c]. It is standardized in the Z.100 series of the International Telecommunication
Union1 (ITU). The original target application of SDL is in the telecommunication domain, but
it has also been applied to the development of (real-time) communication systems in general
[BH93, MT00]. A famous example of the utilization of SDL for communication protocols can
be found in Annex J of the IEEE 802.11 WLAN standard [Ins12a].

During its long history of almost 40 years, SDL has evolved from notation guidelines for state
machines to a language with several syntaxes and complete formal semantics [Ree00, Ree11a,
EGG+01]. Since 1976, the SDL standard has been published in seven major versions and several
minor editions. A summary of all versions and changes is given in Table 7.1. With a four year
update interval of its standards, SDL was very lively during the first years. Currently, SDL
has reached a steady state with a lower publication interval and only minor changes to the
latest standards. This particularly holds for its syntax, which is in the core already described in
SDL-80 [Ree00].

While the focus of SDL was on a common notation for state transition diagrams at the begin-
ning, it was recognized that structure mechanisms, semantics, and tool support are required to
deal with large and complex systems. Thus, more and more features were added to the SDL
standard over the years and executability has become a key issue [EGG+01]. In this regard,
the SDL-2000 standard, where in Annex F of Z.100 [Int00], the dynamic semantics is formally

1http://www.itu.int

http://www.itu.int


100 Chapter 7. The Specification and Description Language – An Outline

standard year focus
SDL-76 1976 • First SDL symbols and definitions for state transition diagrams

(behavior only)

SDL-80 1980 • (Still) informal but more precise description of SDL
• Support of hierarchical structure mechanisms [EHS97]

SDL-84 1984 • First interpretation model based on mathematical graphs

SDL-88
[Int88]

1988 • Formal foundations of today’s SDL: SDL-PR, SDL-GR, abstract
syntax, semantics

• Data definitions based on algebraic models

SDL-92
[Int93]

1993 • Introduction of nondeterminism and object orientation (block-
/process types, packages)

1995 • ASN.1 support [Int95]

1996 • SDL-96: Actually an addendum to SDL-92 with minor
changes, corrections, and simplifications

• Definition of the Common Interchange Format (CIF) [Int96a]

SDL-2000
[Int99a]
[Int02]
[Int07]

1999 • Stronger focus on using SDL for design and implementation
• Operational dynamic semantics with ASMs
• Introduction of exceptions, textual algorithms in SDL-GR, com-

posite states
• New non-axiomatic data model with object orientation
• Support of SDL combined with UML [Int99b]

2002 • Minor updates and corrections, and reorganizations

2007 • Minor changes and corrections of flaws

SDL-2010
[Int12c]

2011 • Separating a subset of SDL in a basic SDL definition
• Support of Unicode
• Removal of unimplemented features like exception handling
• Extensions with new language elements such as input via, timer

supervised states, multiple priority input levels, and signal priorities
• (Bindings to other languages like Java, C, and C++)

Table 7.1: The history of SDL [Ree00, Ree11a, Int12c].

specified in an operational way by using Abstract State Machines (ASM) [BS03], represents an
important step. Since operational semantics is very close to implementations [Pri00], the dy-
namic semantics of SDL-2000 is more easily understandable for system developers and was
also used as foundation for SDL tools [FGW06, PvL03b, PvL03a]. To further improve SDL’s
applicability as implementation language, many couplings to other languages – like to the Ab-
stract Syntax Notation One (ASN.1, [Int08]) and to the Unified Modeling Language (UML, [Obj22])
– and many concepts known from usual programming languages – e.g., temporary variables
or loops and conditions – were brought to SDL. Furthermore, the way of defining data types
was changed in SDL-2000 from algebraic axioms to a constructive and algorithmic data ap-
proach [Ree09, Ree11b, vLoM03, San00]. With the same objective, SDL-2010 was also meant to
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document content
Z.100 Overview of SDL-2010 and its documents [Int12c]
Z.101 Basic SDL: Core features of SDL-2010 [Int12d]
Z.102 Comprehensive SDL: All SDL-2010 features [Int12e]
Z.103 Shorthand notations and annotations [Int12f]
Z.104 Data and action language [Int12g]
Z.105 ASN.1 binding [Int12h]
Z.106 Common Interchange Format (CIF) [Int12i]
Z.107 Object-oriented data [Int12j]
Z.109 UML profile for SDL-2010 [Int12b]

Table 7.2: Documents of the latest SDL standard SDL-2010 [Ree11a, Int12c].

allow bindings to other programming languages like C, C++, or Java [Int12g]. This, however,
was not completed at the time of SDL-2010’s approval. In summary, SDL is no longer used as
description language to visualize and analyze system properties only, but it is used as stand-
alone or integrated2 graphical implementation language for the model-driven engineering of
distributed systems.

The current SDL standard is SDL-2010 and has been approved in December 2011. It consists
of ten main recommendations and several addenda. An overview of all documents is given in
Table 7.2. While the previous SDL-2000 standard came with formal semantics, the semantics is
missing in the current SDL-2010 standard due to a lack of resources [Ree11a]. Instead, Z.100
Annex F of the previous SDL-2000 standard is referenced [Int00]. This document is indeed out-
of-date, but since changes between SDL-2000 and SDL-2010 are only minor, the document still
covers most language parts.

A big advantage of SDL is its support by commercial as well as academic tools. Examples
of commercial tools are PragmaDev’s Real-Time Developer Studio (RTDS) [Praar], IBM’s Rational
SDL Suite [IBMar], and Cinderella [Cinar, RKL05]. However, a drawback of all these tools
is missing support of many features introduced in SDL-2000, i.e., most tools provide SDL-92
or SDL-96 only and there is currently no tool fully implementing SDL-2000 [Ree11a]. As a
consequence, a major objective of SDL-2010 was to separate the core features of SDL, which
should be supported by all tools, into a separate document (Z.101 [Int12d]).

7.1.1 SDL Syntax

The current SDL standard comes with four different syntaxes [Int12c]: SDL Graphical Repre-
sentation (SDL-GR) and three levels of Common Interchange Formats (SDL-CIF). SDL-GR is
the visual and default syntax that is used by developers to specify the structure and behavior of
a system in form of diagrams. It is introduced in [Int12d, Int12e, Int12f, Int12g] and specified
by context-free grammars in Backus-Naur-Form (BNF) with extensions for graphical language
constructs [EGG+01, PvL03a, PvL03b]. Since it is more vivid than the CIF syntaxes, it is usually

2An example framework incorporating SDL is TASTE [PCD+11], which combines SDL with several other mod-
eling and implementation techniques like Matlab Simulink, VHDL, and SystemC. Another example is a simulator
in [SLO+10, MLON13] that supports SystemC and SDL models.
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easier to learn. Though all four syntaxes are human readable, the CIF syntaxes are easier to
handle by tools, because they are purely textual. The three SDL-CIF syntaxes are specified in
[Int12i]. Level 0 of the syntax is also known as SDL-PR (SDL Phrase Representation). Its lan-
guage coverage is equivalent to SDL-GR, thereby representing an alternative for developers to
specify a system with text only. The next CIF syntax is CIF level 1 (also called CIF-PR), which,
different from SDL-PR, also allows partial specifications. SDL-CIF level 2 is also called CIF-GR
and is intended for the exchange of SDL-GR diagrams between different tools. It is an extension
of CIF-PR with additional elements to describe characteristics of the graphical representation.

DemonBlockGameBlock

System DemonGame 1(1)

[ Bump ]

C3

C1

C2

Block DemonBlock

Demon(1,1)
[ Bump ]

R1

1(1)

[ Newgame,
 Probe, Result,
 Endgame ]

[ Win, Lose,
        Score ]

SIGNAL
Newgame,Probe,Result,
Endgame,Win,Lose,Score(Integer),
Bump;

C3

Figure 7.1: Example of the structure of an SDL system with SDL-GR [Int12i].

Figure 7.1 gives an example of the structure of an SDL specification in SDL-GR. The exam-
ple is taken from [Int12i] and shows signal declarations and two SDL blocks. Signals defined
in the text symbol may also have parameters (see signal Score) and can be used in the sys-
tem diagram as well as all referenced block and process diagrams. The SDL blocks GameBlock
and DemonBlock are connected by channel C3 for the unidirectional transfer of SDL signal Bump.
GameBlock is additionally connected to the environment of the system by two channels. By
sending SDL signals to the environment, an SDL system can interact with the underlying hard-
ware/software platform to access hardware peripherals and to communicate with other net-
work nodes. If, vice versa, signals are sent from the environment to the system, the SDL system
can be informed about external events, thereby enabling the specification of stimulus–response
behavior. The SDL block DemonBlock is referenced in the system diagram and specified in the
diagram on the right-hand side of Fig. 7.1. It owns only one SDL process Demon, which defines
(parts of) the behavior of the SDL specification.

SDL processes specify communicating extended finite state machines [EHS97]. In Fig. 7.2,
the definition of process Demon is depicted exemplarily. Besides the SDL-GR notation, the pro-
cess definition is also shown in CIF-GR. In the text symbol (top right), the SDL process defines
a timer T that is set in the start transition (transition on left-hand side) for the first time. The
transition consuming this timer (transition on right-hand side) outputs signal Bump and sets
the timer again with the same interval. In addition to the language elements used in the ex-
ample, SDL has many further features like decisions, procedures, dynamic process creations,
composite states, and priority inputs.
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Timer T;Generate

Bump

T

SET(now+1,T)

Generate

Generate

SET(now+1,T)

Process Demon /* CIF ProcessDiagram */
/* CIF Page 1 (1400,1000) */
Process Demon;
/* CIF DefaultSize (200,100) */
/* CIF Text (800,100) */
Timer T;
/* CIF End Text */
/* CIF Start (300,100) */
start;
/* CIF Set (300,250) */
SET(Now+1, T);
/* CIF NextState (300,400) */
nextstate Generate;
/* CIF State (550,100) */
state Generate;
/* CIF Input (550,250) */
input T;
/* CIF Output (550,400) */
output Bump;
/* CIF Set (550,550) */
SET(Now+1,T);
/* CIF NextState (550,700) */
nextstate Generate;
/* CIF End ProcessDiagram */
endprocess Demon;

Figure 7.2: Example of an SDL process definition in SDL-GR and CIF-GR [Int12i].

7.1.2 SDL Semantics

Though SDL-2010 does not come with a formal semantics, many parts of SDL-2000’s formal
semantics are still valid. In the following, a summary of the static and dynamic SDL-2000
semantics is given, which is defined in Annex F of SDL-2000 Z.100 [Int00].

Starting from the concrete syntax of an SDL specification, the static semantics checks the SDL
specification against well-formedness conditions [Pri00]. These conditions are given by using
first order predicate calculus, because they can hardly be expressed with context-free gram-
mars, and include, for instance, visibility checks of variables and SDL signals. If the checks are
successful, the concrete SDL syntax is transformed into an abstract syntax tree3, which is also
formally defined in BNF, and again checked against constraints. The transformation consists of
several steps: First, irrelevant details, like separators, are removed from the specification. Sec-
ond, so-called shorthand notations – or sometimes referred to as syntactic sugar [PST07] – are
removed in favor of their corresponding core SDL expressions. This transformation actually
describes a mapping from concrete SDL syntax into concrete SDL syntax. Though shorthand
notations do not add additional functionality to SDL, they make SDL more concise and keep
the language core and the dynamic semantics small [Ree09, Ree11b]. Examples of a shorthand
notation are asterisk states, which stand for all SDL states that are used in the actual context,
and lists of output signals that are mapped to a sequence of single outputs. In the last step of the

3Actually, the SDL standard distinguishes between two abstract syntaxes, AS0 and AS1 [PvL03b]. Because the
only purpose of AS0 is to unify the differences between the concrete syntaxes and is, therefore, very similar to the
concrete syntaxes, we still refer to AS0 as concrete syntax and to AS1 as abstract syntax.
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transformation, rewrite rules are applied to map elements of the concrete syntax to correspond-
ing constructs of the abstract syntax, which is almost a one-to-one mapping [PvL03a, PST07].

The dynamic semantics defines the behavior of an SDL specification [Pri00, EGG+01]. Its
starting point is the abstract syntax tree (AS1) of the specification, which is mapped to prim-
itives of the SDL Abstract Machine (SAM). The SAM is itself defined with an ASM [BS03]. It
is executed under the control of the SDL Virtual Machine (SVM), which provides typical oper-
ating system functionalities for system initialization and firing of transitions [EGG+01]. ASMs
were originally published by Yuri Gurevich [Gur95] under the notion of evolving algebras. SAM
and SVM fall into the class of asynchronous multi-agent ASMs and consider real-time aspects
by providing a notion of time and timers [Int00]. Multi-agent ASMs consist of a set of ASM
agents, each running its ASM program autonomously and interacting with other agents by
sharing parts of the global state [She12]. ASM programs, in turn, consist of transition rules
defining the moves and, thereby, the possible runs of an ASM agent. The overall run of a
multi-agent ASM is accordingly defined on a partial order of all moves of ASM agents.

In the dynamic semantics [Int00], The SDL standard distinguishes between three types of
ASM agents: SdlAgentSets, Links, and SdlAgents. For each agent type, a different ASM program
is provided, which distinguishes between initialization and execution phase. Before initializing
an SDL specification, there is only one SdlAgentSet, which represents the SDL system type of
the specification. During the initialization, the system is recursively unfolded according to
its structure of SDL blocks and processes, i.e., SdlAgentSets create contained SdlAgents and vice
versa. Additionally, Links are generated to connect gates with each other. To illustrate the result
of the unfolding, Fig. 7.3 presents the final system hierarchy of the demon game example.

SdlAgentSet /* DemonGame */

/* DemonGame */SdlAgent

SdlAgent /* GameBlock */

SdlAgentSet /* GameBlock */

Link

SdlAgent /* DemonBlock */

SdlAgentSet /* DemonBlock */

SdlAgentSet /* Demon */

SdlAgent /* Demon */

Timer T;Generate

Bump

T

SET(now+1,T)

Generate

Generate

SET(now+1,T)

Link

SdlAgentSet /* Game */

SdlAgent

/* Game */

Link Link
state

machine

input port

Link Link

output gate input gate signal delivery
(by SdlAgentSet or Link)

signal forwarding
(by Link)

signal output
(by SdlAgent)

Link

Figure 7.3: Hierarchical nesting of ASM agents after initialization. The notation is based on
[Fli09, p. 61].
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After initialization, all ASM agents concurrently run the execution phase of their ASM pro-
grams. For Links, this phase consists of the continuous, unidirectional, and serial forwarding of
SDL signals between gates, whereas the task of SdlAgentSets is to deliver signals from an input
gate to the input port of a contained SdlAgent. The state machines that are explicitly given by
the system designer in the SDL specification are executed by SdlAgents. They have an input
port attached that holds all arrived SDL signals sorted by their arrival time. To find the next
transition to be executed, this queue is inspected and the corresponding signal is removed from
the queue. Usually, this is the first signal of the input port, but SDL additionally provides lan-
guage constructs to save or privilege signals, thereby changing the signal consumption order.
Though the definition of active behavior by state machines is allowed in all SdlAgents since
SDL-2000 – regardless of their origin as SDL system, block, or process –, no tool actually sup-
ports this feature for blocks and systems. Instead, they only support state machines in SDL
processes. For this reason, SdlAgent and SDL process is often used synonymously, although
the statement that only SDL processes define the active behavior of a system is no longer valid
since SDL-2000.

As shown in Fig. 7.3, an initialized SDL system may also have gates to the environment
to interact with the hardware/software platform. According to the SDL standard, there are
only few restrictions on the SDL environment and it is just assumed that it consists of one or
more agents [Int99a]. In real systems, this assumption alone is often not sufficient and further
constraints, e.g., on the frequency of system stimulus, are stipulated [EHS97].

7.2 Model-driven Development with SDL

Due to an intuitive graphical representation and a formal semantics, SDL is well-suited for
model-driven engineering, where abstract graphical system models build the central artifacts,
guide through the entire development process, and are largely transformed and generated au-
tomatically [ZW06]. The objectives of such approaches are to achieve productivity gains and
platform independence, and to improve quality and maintainability of products by applying
approved structuring concepts and component reuse. A crucial paradigm of model-centric en-
gineering is abstraction, i.e., the omission of irrelevant details like technological aspects and
the focusing on objects of interest. To derive model-driven implementations, abstract mod-
els are refined to a less abstract level in each development step and finally transformed to an
executable binary.

A model-driven development process, in which SDL is used as modeling language, is SDL-
MDD (SDL Model-Driven Development) [KGW06, Got07, BCGI12]. SDL-MDD is a domain-
specific, tool-supported, and iterative process to engineer distributed systems and communi-
cation protocols. It is architecture-centric and based on the Model Driven Architecture (MDA)
of the Object Management Group (OMG) [Gro03]. The development phases of SDL-MDD de-
scribe a holistic approach ranging from capturing requirements to the deployment of the exe-
cutable to the target platform. A key feature of MDA in general and SDL-MDD in particular is
the distinction between platform-independent and -specific aspects in order to deploy the same
functional system description on different platforms. Thus, it is also possible to use the same
model for performance simulations as well as for the final release.
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Figure 7.4: Model-driven development with SDL-MDD [BCGI12]. Tools and components used
in this thesis are written in bold.

The development process with SDL-MDD is shown in Fig. 7.4 and comprises two phases: A
specification phase, in which models fulfilling all functional and platform-specific requirements
are developed, and an implementation phase, in which the output of the specification phase is
transformed to executable files that are tailored to the final runtime environment.

The specification phase starts with the Computation Independent Model (CIM), in which
requirements are collected by means of Message Sequence Charts (MSCs, [Int11]) and infor-
mal text. These documents build the input to generate the Platform Independent Model (PIM),
which is a formal specification of system structure and behavior with SDL-GR or an equiva-
lent textual representation. Though the PIM is independent of a concrete hardware platform
to enable a fast migration to different platforms, it is already functionally complete and allows
behavioral validations. The PIM is extended to the Platform Specific Model (PSM), in which ab-
stract interfaces to a specific hardware platform are added and corresponding parameters con-
figured. This transformation step includes, for instance, the determination of a concrete com-
munication technology. PIM and PSM are not built from scratch but by using modularization,
approved reusable components – such as SDL micro protocols [GKS02, FGGS04, Fli09, FGG+05]
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and SDL design patterns [Got03, FGG+05] –, and heuristics. Tools to generate CIMs, PIMs, and
PSMs are provided by PragmaDev’s RTDS [Praar] and IBM’s Rational SDL Suite [IBMar].

The implementation phase starts with the PSM and consists of several automatic transfor-
mation steps. Thereby, manual coding is avoided and SDL system and implementation are
consistent by design [San00]. In the first step, the textual representation of the PSM is trans-
formed into an imperative or object-oriented language such as C or C++. This step is supported
by industrial as well as academic tools. Examples of commercial tools are the C/C++ code gen-
erators of PragmaDev’s RTDS [Praar] and Cmicro/Cadvanced of IBM’s Rational SDL Suite
[IBMar]. The Configurable Transpiler for SDL to C++ Translation (ConTraST) [FGW06, Fli09] is an
example of an SDL-to-C++ transpiler from an academic project (see also Sect. 9.2). The result-
ing artifact of this first transformation step is independent of the runtime environment of the
target platform and called Runtime Independent Code (RIC).

The RIC is further compiled into platform-specific machine code called Runtime Specific
Code (RSC). For this step, a corresponding platform-specific compiler is used, which is, for in-
stance, a compiler of GNU’s compiler collection4. The RSC is additionally augmented by an
implementation of the SVM (SDL engine) to initialize and control the execution of the SDL sys-
tem, and an SDL environment implementation providing platform-specific drivers and inter-
face implementations. The SDL engine and SDL environment templates are usually provided
by tool chains. Many tool chains also support the incorporation of SDL systems into common
operating systems (OSs) like Windows5 or Linux6 or Real-Time Operating Systems (RTOSs).
Thereby, parts of the SDL engine and the environment are realized by the OS. This particularly
affects the scheduling and execution of the SDL system, which can be simplified by mapping
SDL processes to tasks/processes of the OS.

To implement and evaluate the SDL extensions that have been developed in the course of this
thesis (see Chapter 8), a semantically integrated tool chain consisting of IBM’s Rational SDL
Suite [IBMar], ConTraST [FGW06, Fli09], the SDL Runtime Environment (SdlRE [FGW06, Fli09]),
and the SDL Environment Framework (SEnF [FGJ+05]) has been used and extended. SdlRE rep-
resents an SVM implementation and is further described in Sect. 9.4. SEnF provides implemen-
tations of the SDL environment for several target platforms (e.g., PCs with Linux and Imote 2
sensor nodes [MEMara]) and is presented in Sect. 9.5 in more detail.

The SDL-MDD process in Fig. 7.4 outlines the development for two different target platforms
exemplarily: Imote 2 sensor nodes and a simulator called Framework for the Efficient simulator
coupling on Requirements and Architecture Level (FERAL [BCG+13]). The RSC for deployments
on Imote 2 is uploaded to the sensor node with help of a code- and bootloader [KE09]. The
execution of the RSC for simulation purpose is triggered by the core schedulers of FERAL,
which may also interconnect the RSC with other domain-specific simulators like ns-37 or Mat-
lab Simulink8. Since both RSCs are based on the same RIC, accurate simulative performance
and behavior evaluations are possible.

SDL-MDD has been applied in many academic projects. An example with own participation
is the micro protocol-based development and performance evaluation of MacZ [CBGK08], a

4http://gcc.gnu.org/.
5http://windows.microsoft.com/
6https://www.kernel.org/.
7http://www.nsnam.org.
8http://www.mathworks.com/products/simulink/.
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MAC layer for ad-hoc networks with protocols for deterministic synchronization and medium
access [BGK08]. In [BCG09], we present a second application of SDL-MDD to the micro proto-
col-based development of deterministic transfer protocols for wireless networks. In this regard,
a set of SDL-MDD-compliant design guidelines is introduced to reduce serialization delays.
Further examples of SDL-MDD applications by former colleagues are the development of a
routing protocol architecture for mobile ad-hoc networks [GGH08] and the interfacing of SDL
with the real-time field bus technology FlexRay [BGW10].



8. CHAPTER

SDL Extensions for Time-critical Systems
Though SDL is a powerful and extensive language, it has limitations regarding the design and
realization of real-time systems. Many of these limitations are a result of the gap between SDL’s
view of a perfect world with unlimited resources and the real world with shortages and delays.
In this chapter, extensions are presented to reduce this gap and to improve the expressiveness
of SDL and its applicability to real-time systems. The extensions are enhancements of previous
work [Chr10], where scheduling-aware system specifications and SDL process priority schedul-
ing has been proposed. However, as it turned out, these extensions were not sufficient, and the
introduction of dynamic execution structures is required to bring the requirements of real-time
systems and the properties of SDL systems together. By adopting the concept of real-time tasks
[Kop97] in SDL, a suitable solution is presented in the following.

The structure of this chapter is as follows: In Sect. 8.1, shortcomings of SDL and the need for
improvements are discussed. Thereafter, scheduling-aware system specifications are summa-
rized in Sect. 8.2. The main part is Sect. 8.3, where SDL real-time tasks are formally defined and
incorporated into SDL. Their formal incorporation into SDL’s syntax and semantics is, how-
ever, left out and presented in Appendices B and C. Finally, Sect. 8.4 discusses the results and
relates them to existing language elements of SDL.

Results presented in this chapter have been published in [5], [13], [15], [17], and [21].

8.1 Motivation

The correctness of a real-time system does not only depend on functional correct results but
also on the point in time, when the results are available [Kop97, Sta88]. To meet this central re-
quirement of timeliness, results must be produced as fast as necessary. This does not necessarily
imply that results are produced without perceivable delay, which is a common misleading def-
inition of a real-time system in the multimedia domain. Instead, in their original definition,
worst-case delays of a real-time system must be predictable and sufficiently low, thereby re-
quiring not just “very fast systems” but an adequate system design and scheduling strategy.

Examples of real-time systems can be found in various application domains. They are very
prevalent in embedded systems and (networked) control systems. Their application scenar-
ios range from soft real-time systems, which may miss a deadline, to hard real-time systems,
where the violation of time constraints can have a catastrophic outcome [Liu00]. An example
from the domain of protocols is TDMA, which is used to communicate over a shared medium
reliably and with a desired quality-of-service. If in a system with TDMA-based medium ac-
cess, nodes violate their transmission slots, frame collisions can occur, which can endanger the
functionality of the entire system.
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Though SDL is advocated as language for real-time systems [Int12c], it can actually not en-
force a desired time behavior [EGG+01]. Instead, capabilities of SDL are limited to delaying and
timeout mechanisms, thereby being more descriptive than prescriptive. In real-time systems,
this is, however, not sufficient, and more control over the time behavior is required in order to
fulfill time constraints. The following subsections give more details on these shortcomings.

8.1.1 Non-Determinism in the Semantics of SDL

In the SDL standard [Int12c], there are several parts with explicitly desired nondeterminism.
An example are spontaneous transitions [Int12e], which cause transition executions without
triggering signal or other precondition. Since there is no priority defined between spontaneous
transitions and regular transitions that are triggered by signals, it is up to the implementation
to define an order. A further example is the delivery of SDL signals within an SdlAgentSet con-
taining several SdlAgents. Here, if the sender does not specify the Pid of the SdlAgent explicitly,
the SdlAgentSet can forward signals to an arbitrary enclosed SdlAgent.

In addition to explicit nondeterminism, the SDL standard contains parts, which are well-
defined in the conceptual SDL world, but lead to nondeterministic behavior in implementa-
tions. This particularly holds for the scheduling of an SDL system, because different from
SDL’s concurrent runtime model (see Sect. 7.1.2), a serialized execution model is required on
real hardware.

The necessary steps to serialize the execution of agents are illustrated in Fig. 8.1. On the
left-hand side, the ASM model of the agent hierarchy from Fig. 7.3 is shown. In this model,
all agents run concurrently, executing transitions and processing signals from their input ports
or gates. In implementations, the concurrent behavior has to be transformed into a more se-
quential model. In particular on a single-core hardware, which is currently still standard of
embedded systems and shown in the right part of Fig. 8.1, even total serialization is required.
This is achieved by defining an order, either based on agents or on signals triggering transition
executions. Though the SDL standard defines three types of ASM agents, common implemen-
tations consider only SdlAgents1 explicitly; SdlAgentSets and Links are either not realized as

asynchronous concurrent 
execution of agents

ASM model Execution on single-core hardware

serialization of 
transition executions

SDL system

SdlAgentSetSdlAgent Link

input port / gate SDL signal

signal-based scheduling 

agent-based scheduling 

Figure 8.1: Execution according to formal semantics [Int12i] and in implementations.

1Often simplified referred to as (SDL) process. In this regard, see also Sect. 7.1.2.
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particular agents or implicitly executed when SDL signals are sent. If not stated otherwise, we
assume such implementations in the following and do not consider the execution of Links and
SdlAgentSets.

The process of serializing transition executions depends on the SVM implementation and is
usually based on a FCFS (First Come, First Served) order. To influence the transition execu-
tion order from within the design, there are only limited SDL constructs like priority inputs
[Int12e] and signal priorities [Int12d], which affect only the order within SdlAgents. In par-
ticular, SDL does not provide any constructs to influence transition execution orders between
different agents. SDL real-time tasks as presented below remove this disadvantage by intro-
ducing a notion of system task and a priority-based execution model in SDL. These extensions
are incorporated into SDL’s syntax and semantics and pave, together with SDL extensions for
scheduling-aware system design, the way for the adequate and transparent execution of SDL
systems with consideration of transition urgencies.

8.1.2 Time Progress in SDL

In the conceptual world of SDL, an undefined amount of time may pass during the execution
of almost all constructs [Int12c]. It is even valid that the time to execute a construct varies in
two runs. The definition of time progress furthermore allows that SDL actions do not require
any amount of time, and there are, in particular, two situations, in which time progress is
always fixed to zero [GP05]: Sending signals via channels with a nodelay attribute and starting
execution of an enabled transition. Because of this vague notion of time, several more concrete
and more realistic time models have been proposed in the literature (see also Sect. 11.2).

In SDL implementations on real hardware, however, progress of physical time is not control-
lable and always larger than zero.2 There are, in general, three sources of delay, which cause a
deferral of a transition execution (see Fig. 8.2): First, the consumption of the triggering signal
is delayed due to other SDL signals in the same input port. We refer to this type of delay as
queueing delay. It can be reduced in the SDL specification by using priority inputs, whose ap-
plicability is, however, very limited, because they depend on the state of the receiving SdlAgent

last consumed
signal

s

sig

T

/* task */

-

/* task */
signal under
considerationSdlAgent1

SdlAgent2run-to-completion delay3

serialization delay2

queueing delay1
3

21

Figure 8.2: The three sources of transition execution delay in SDL.

2Yet time progress is possibly not always perceivable if granularity of the clock of the system is coarse, physical
amount of time is always required to execute one to many processor instructions.
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and the signal type. Thus, two instances of the same signal type cannot be treated differently.
The second type of delay is called serialization delay and comprises the time to execute transi-
tions in other SdlAgents. Because the SDL semantics assumes all SdlAgents to run concurrently,
this delay cannot be reduced in standard SDL, but their reduction is one of the main objectives
of this thesis. A further source of delay is referred to as run-to-completion delay and defines the
time to finish the execution of a currently running transition. If this transition is in the same Sdl-
Agent, there is no way to interrupt the transition execution, because SDL transitions are atomic.
If, on the other hand, the transition is executed in a different SdlAgent, the execution could be
interrupted in favor of the considered signal and continued at a later time. This would, how-
ever, require a scheduler with preemption, which is in general more complex and less efficient.
SDL real-time tasks address this delay by incorporating task suspension in SDL.

8.1.3 Shortcomings of SDL by Means of a Concrete Example

By means of the SDL system in Fig. 8.3, this section discusses further design limitations of SDL
regarding the realization of real-time systems. The system shows a protocol stack consisting of
an application layer, a network layer, and a MAC layer, which is taken from the specification of

Block Application

faultDetector

System ExampleSys

sensorProp

Block NwLayer

Block MacLayer

routing

nav

contTxRx

csma

Figure 8.3: Example system illustrating shortcomings in SDL’s expressiveness.
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MacZ [BGK07, CBGK08]. The system comprises two tasks: First, sensor values have to be cre-
ated periodically and sent to the network. Second, the system should inform about exceptional
situations, which can occur at any time, very quickly. Since the information sent by the second
task is much more important, it should take precedence over sensor value propagation.

When trying to realize both tasks and to privilege them adequately, the designer faces two
problems. The first problem results from the fact that the dynamic execution structure is in
general orthogonal to the static system structure, which is built with concepts like abstraction,
modularization, and reusability. This means, in the concrete example, that both tasks are not
restricted to a single SDL process but they are realized by numerous transitions spread over
the entire system. Hence, it is not possible in SDL to privilege all transition executions that are
executed as part of a particular system task. Though there are in fact some tool-specific exten-
sions enabling the prioritization of all transitions of an SDL process or block (see also related
work in Chapter 11), which could be used in the example to prioritize the origin process of the
second task (faultDetector), there is no possibility to privilege signals and transitions that are
executed in the context of the second task in a process-spanning way. The second problem are
SDL transitions that are shared by several system tasks. For instance, in the example system,
the same transitions in blocks NwLayer and MacLayer are used by both tasks. However, there
are no available SDL constructs to give their execution precedence in the context of the second
task only, since all available prioritization measures – like priority inputs or signal priorities –
are linked to structural elements of the specification.

To sum up, language support is missing in SDL to enable a mapping of transition executions
to system tasks, on whose behalf the transition is executed, and to assign adequate priorities to
their execution. By introducing SDL real-time tasks, we address these shortcomings in Sect. 8.3.

8.2 Scheduling-aware System Specifications

Running SDL systems on real hardware requires a scheduler in the SVM implementation to
serialize the concurrent ASM model of SDL. In general, all dynamic scheduling strategies are
feasible to deal with the actor model of SDL. Static offline strategies, on the other hand, are
inappropriate due to SDL’s capabilities to dynamically create signals and SdlAgents.

To make scheduling more transparent and controllable, annotation-based SDL extensions
have been introduced to choose and configure a desired scheduling strategy [CBG11].3 In pre-
vious work, three scheduling strategies have been presented for these extensions: Agent-based
round robin (RR), agent-based FCFS, and agent-based (SDL process) priority scheduling. Agent-based
RR corresponds most closely to the semantics of SDL, because it executes all agents including
SdlAgentSets and Links. Due to the execution of idling agents, it is also the most inefficient
strategy. Agent-based FCFS is more efficient and schedules only SdlAgents with enabled tran-
sitions. To privilege SdlAgents, process priority scheduling has been introduced, enabling the
specification of fixed precedence ratings and the suspension of low priority agents.

However, as it turned out, process priority scheduling is in general not sufficient, because
transitions of a task are usually not grouped into single SdlAgents. Instead, a system task is
composed of transitions that are distributed over several SDL blocks and processes. Motivated

3These extensions have been published in the master’s thesis [Chr10] and have been enhanced to support a new
scheduling strategy for SDL real-time tasks.
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DemonBlockGameBlock
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strategy = signals;

Figure 8.4: Selection of signal-based FCFS scheduling in the demon game example.

by this fact, SDL real-time tasks and a new scheduling strategy for their execution have been
elaborated (see Sect. 8.3) and implemented (see Chapter 9). Similar to previous scheduling
strategies, the new strategy can be selected by the designer in the system. To enable compar-
ison evaluations with a state-of-the-practice scheduler, a signal-based FCFS strategy has been
realized and integrated.

To illustrate the selection of a scheduling strategy within an SDL specification, Fig. 8.4 shows
an extension of the demon game system, in which signal-based FCFS has been selected. The
underlying formal foundations in terms of syntactical and semantical extensions can be found
in Appendices B and C, whereas implementation-specific aspects are summarized in Chapter 9.

8.3 SDL Real-time Tasks

This section introduces SDL real-time tasks, their foundations from real-time systems, their
formal definition, and their usage in SDL specifications. Formal extensions of the syntax and
semantics of SDL can be found in Appendices B and C. Their implementation is surveyed in
Chapter 9, their functional and quantitative evaluation in Chapter 10.

8.3.1 Foundations of Real-time Tasks

Real-time tasks (short: tasks) are a concept to structure and schedule the execution of real-time
systems [Kop97]. A task is defined as the execution of a sequential program, thereby being
a dynamic and nonrecurring unit, which is controlled by an OS or runtime environment. In
[Kop97], Kopetz distinguishes between simple tasks (S-tasks) and complex tasks (C-tasks).
An S-task is a task without synchronization points, i.e., without interaction with other tasks,
whereas a C-task requires synchronization with other tasks. In common programming lan-
guages, this is achieved by blocking statements and semaphores. Though a task is unique and
nonrecurring, other tasks may execute the same code. Thus, it is reasonable to distinguish be-
tween a task as execution unit and its implementation as code unit. For instance, a system reading
temperature values every minute consists of one code unit with an implementation to access
the temperature sensor and 60 execution units per hour running the code unit.
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If several tasks are running simultaneously, their execution is ordered by their urgencies.
For this, priorities are assigned to tasks, either statically or dynamically, e.g., based on dead-
lines. Depending on the cause of an execution, a task is either event- or time-triggered. Event-
triggered tasks start execution after observing a significant state change, which is, for instance,
an external event that is detected by a sensor, whereas time-triggered tasks start at determined
points in time.

A real-time system always has a clearly defined objective. Thus, system tasks and subtasks as
well as structure of hardware and software are known a priori [Sta92]. Different from desktop
systems, amount and kind of system stimuli are known or can be estimated with an upper
bound. A further property is that several tasks may run concurrently but not competitively,
i.e., from a global perspective, all tasks work cooperatively to perform the system’s overall job.

8.3.2 Formal Definition of Real-time Tasks in SDL

In this section, the concept of real-time tasks is adopted in SDL. Note that there is already a
notion of task in SDL to specify statements in transition bodies. To avoid confusion, we refer to
this type of task as task statement in the following.

A first step when transferring real-time tasks to SDL is the definition of code and execution
units. As a starting point, a code unit can be defined as the specification of a single SDL transi-
tion. Accordingly, a simple execution unit in SDL is the execution of this transition by an SVM
implementation. Hence, a simple SDL real-time task is formally defined as follows:

Definition 8.1. Let T be the set of all transition specifications (code units) of an SDL system.
Then, a simple SDL real-time task τ is a tuple (id, te, ftransition, fprio), where

• id is a globally unique task identifier,
• te is a transition execution (execution unit),
• ftransition : {te} → T is a function to map te to a code unit, and
• fprio : {te} →N ∪ {unde f } is a function defining the priority of the transition execu-

tion.

Note that te is a nonrecurring transition execution and dynamically created at runtime when
the SDL real-time task is executed. Furthermore, an SDL real-time task is also unique and
nonrecurring, since it comprises nonrecurring execution units, and there are, in particular, no
two SDL real-time tasks with the same id.

The definition allows that several SDL real-time tasks execute the same transition (a prop-
erty called transition sharing), since there is no restriction on ftransition. Though a simple SDL
real-time task has only one transition execution, it may compete against transition executions
of other SDL real-time tasks. To define an order between them on the basis of their urgencies,
a priority is optionally assigned by fprio such that lower values represent higher priorities. Ac-
cordingly, 0 is the highest priority. If no priority is defined explicitly, unde f is assigned and the
transition is executed without preference.

In realistic systems, simple SDL real-time tasks are not sufficient. Instead, system functional-
ities comprise several transition executions, which may run in sequence or concurrently. Here,
an example is the protocol stack in Fig. 8.3, where sent/received data traverses several SDL
blocks and processes. To enable SDL real-time tasks for such systems, a more general and
process-spanning definition is required:
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Definition 8.2. Let T be the set of all transition specifications of an SDL system. Then, a
local SDL real-time task τ is a tuple (id, Te, ftransition, fprio, <eo), where

• id is a globally unique task identifier,
• Te is a set of transition executions,
• ftransition : Te → T is a function mapping each transition execution to an SDL transi-

tion,
• fprio : Te→N∪{unde f } is a function assigning a priority to each transition execution,

and
• <eo Te × Te is an execution order on Te with the following properties:

– <eo is a strict partial order, i.e., <eo is irreflexive, transitive, and antisymmetric

– ∃te ∈ Te.∀t′e ∈ Te.(t′e 6= te ⇒ te <eo t′e), i.e., there is a least element defining the
starting point of the task.

Similar to simple SDL real-time tasks, transition executions of local tasks are nonrecurring
events. Since <eo defines a causal order only, there is no restriction on time progress in between
two transition executions of the same SDL real-time task. Consequently, a transition execution
may also be delayed by using SDL timers or SDL real-time signals [KBCG11]. Though the order
<eo demands from SDL real-time tasks to start with a single transition execution, it does not
enforce a total order. Thus, concurrent transition executions, i.e., transition executions that are
not ordered by <eo, become possible. They can be executed in any order or simultaneously, if
the hardware provides several processing units. A further implication of this definition is that
the same transition can be executed multiple times in the same SDL real-time task (a property
called transition repetition).

Since priorities are associated with transition executions and not with the SDL real-time task,
different transition executions of the same task can run with different priorities. Accordingly,
it is also possible to execute the same SDL transition multiple times with different priorities.
In this case, priorities are evaluated both to privilege an SDL real-time task over another SDL
real-time task and to order transition executions of the same task if they are not ordered by <eo.

To apply SDL real-time tasks to networked systems, the definition is further extended:

Definition 8.3. Let N be a set of network nodes and T the set of all SDL transition specifi-
cations. Then, an SDL real-time task τ is a tuple (id, Te, ftransition, fprio, fnode, <eo), where

• id is a globally unique task identifier,
• Te is a set of transition executions,
• ftransition : Te → T is a function assigning each transition execution to an SDL transi-

tion,
• fprio : Te→N∪{unde f } is a function assigning a priority to each transition execution,
• fnode : Te → N is a function allocating each transition execution to a network node,

and
• <eo Te × Te is an execution order on Te with the following properties:

– <eo is a strict partial order, i.e., <eo is irreflexive, transitive, and antisymmetric

– ∃te ∈ Te.∀t′e ∈ Te.(t′e 6= te ⇒ te <eo t′e), i.e., there is a least element defining the
starting point of the task.
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If there are nodes in the network running different SDL systems, T contains the union of all
SDL transition specifications. In consequence, there is a constraint on fnode, because a transition
can only be executed by a node with a corresponding SDL transition specification. Based on
the general definition of SDL real-time tasks, different types of tasks can be distinguished:

Definition 8.4. Let τ = (id, Te, ftransition, fprio, fnode,<eo) be an SDL real-time task. Then, τ is
called

• time-triggered, if the first transition execution of τ (that is the smallest element w.r.t.
<eo) is either triggered by an SDL timer, SDL signal with activation delay, or real-time
signal [KBCG11]. Otherwise, τ is called event-triggered.

• serial, if <eo defines a total order:

∀t1, t2 ∈ Te : (t1 6= t2) =⇒ ((t1 <eo t2) ∨ (t2 <eo t1)).

Otherwise, τ is called concurrent.
• non-terminating, if Te contains infinitely many transition executions.
• distributed, if the image of fnode contains at least two distinct elements:

∃t1, t2 ∈ Te : fnode(t1) 6= fnode(t2).

Otherwise, τ is a local SDL real-time task (see above).
• cyclic, if the same transition is executed more than once on the same node:

∃t1, t2 ∈ Te : (t1 6= t2) ∧ ( ftransition(t1) = ftransition(t2)) ∧ ( fnode(t1) = fnode(t2))

In this case, neither ftransition nor fnode are injective. Note that a non-terminating SDL
real-time task is always cyclic, since the set of transitions and the set of nodes are
finite.

Though a distributed SDL real-time task requires the execution on several nodes, the defini-
tion does not describe how nodes communicate. Instead, value passing and synchronization to
enforce the execution order <eo is left to the environment and the SVM implementation of the
system. They are also responsible for transferring task attributes like task ids between nodes. In
addition, they have to take measures to guarantee uniqueness of task ids. This can, for instance,
be achieved by subdividing task ids into a node id part and a locally unique part.

Comparing the above definition of real-time tasks with the original definition of Kopetz
[Kop97], there is at first glance no complex real-time task in SDL, since SDL has no explicit
constructs for blocking synchronization. But taking a closer look, there are also situations in
SDL, in which the execution of a real-time task has to be delayed due to the occupancy of the
executing agent, which can be seen as “shared resource”. These situations are caused by the
run-to-completion semantics of SDL transitions, because an agent must finish a running tran-
sition before another transition of the same agent can be executed. Thus, every SDL real-time
task sharing SDL state machines with other tasks can be seen as complex within the meaning
of Kopetz [Kop97]. Consequently, also transition executions of real-time tasks can suffer from
some kind of synchronization delay. On implementation level, there is additionally synchro-
nization required to access shared data, e.g., signal queues of an SdlAgent. Since this synchro-
nization depends on the implementation, it is not inherent to real-time tasks.
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Though SDL real-time tasks are nonrecurring execution units, they are usually fulfilling re-
curring system tasks. An example from protocol design are RTS/CTS handshakes, where a
single application of a handshake can be described by one SDL real-time task. Since RTS/CTS
handshakes are, however, performed before each communication, they are recurring. Accord-
ingly, there are several SDL real-time tasks during the lifetime of the system that execute the
same set of transitions. To enable the association of SDL real-time tasks with the objective of
their execution, we introduce task types and a type function:

Definition 8.5. Let Φ = {τ1,τ2, . . .} be a set of SDL real-time tasks and Γ = {γ1,γ2, . . . γk}
the set of task types of a (distributed) system. Then, a function ftype : Φ→ Γ ∪ {unde f } is
called type function, if it associates each SDL real-time task with the system task it fulfills.

Though task types are formally captured in Γ, a task type itself is more an intuitive than a
formal property of a real-time task – e.g., “RTS/CTS handshake“. Unlike the set of SDL real-
time tasks Φ, the set of task types Γ is always finite.

8.3.3 Incorporation of SDL Real-time Tasks into SDL

This subsection presents the incorporation of real-time tasks into SDL. It is shown how SDL
real-time tasks are created, how transitions are executed in the context of a task, and how task
attributes affect the transition selection order. The presentation focuses on an illustrative de-
scription, whereas concrete changes and extensions of SDL’s formal syntax and semantics are
mostly left to Appendices B and C.

8.3.3.1 Creation and Control of SDL Real-time Tasks

To associate transition executions with real-time tasks, so-called task signals are introduced in
SDL, which are SDL signals extended with task attributes consisting of task id, priority, and task
type. For task id, a new SDL data type Tid is composed that is similar to the existing process
identifier data type Pid. Task signal priorities are natural numbers as defined in Definitions 8.1,
8.2, and 8.3, and influence the transition execution order of SdlAgents. Task types, on the other
hand, are scenario-dependent, thereby preventing the use of pre-defined data types. Instead,
user-defined types are required, which can be created with literals. Besides task signals, plain
SDL signals are still available to trigger transition executions outside the scope of an real-time
task. They are treated with lower priority than transitions that are triggered by task signals.
The declaration of plain SDL signals and task signals is identical, i.e., the same signal type
definition can be used as basis for all signal instances.

By means of two examples, Fig. 8.5 shows the creation of two simple SDL real-time tasks
by using new syntactical keywords called task actions. In both examples, task signals are cre-
ated by the keyword newTask. In Fig. 8.5(a), the task signal is based on a regular SDL signal
(event-triggered task), whereas in Fig. 8.5(b), it results from an SDL timer (time-triggered task).
Though in both examples, an SDL real-time task is generated immediately, the actual start of
the task is delayed until the first task signal is consumed. In Fig. 8.5(b), this is explicitly delayed
by specifying newTask in a set statement for an SDL timer, which must first expire before a task
signal can be consumed. Further alternatives to create time-triggered SDL real-time tasks are
signal outputs with activation delay and real-time signals [KBCG11].
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(a) Task signal based on regular SDL signal.
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(b) Task signal based on SDL timer.

Figure 8.5: Simple real-time tasks in SDL.

When creating a new SDL task with keyword newTask, a unique task id of Type Tid is au-
tomatically generated by the SVM and associated with the task signal. Type of the task and
priority of its first transition execution can be provided in the specification by using keywords
type and prio, respectively. The value for type is a user-defined literal, whereas prio takes an
expression evaluating to a natural number (e.g., a natural constant or variable). In the example
of Fig. 8.5(a), type TaskType0 and the largest possible priority 0 are associated with the task
signal. In Fig. 8.5(b), only priority p, which evaluates to 2, is assigned as task attribute. Since
there is no task type provided, the type of the timer-based task signal is set to the predefined
value undef. If the task signal priority would be omitted (not shown in the examples), the task
signal would obtain the lowest possible priority by default.

To access attributes of a consumed task signal in a transition, three nullary functions (called
task operators) are introduced in SDL: taskId, taskPrio, and taskType. The application of
taskType is shown in Fig. 8.5(a), where it is used for demultiplexing purpose in the transition
consuming signal sig to distinguish follow-up actions.

To create non-simple SDL real-time tasks, the keyword contTask is introduced to continue a
real-time task by forking further transition executions. Its application is illustrated in Fig. 8.6,
which is an extension of Fig. 8.5(a). Besides the application of contTask in signal outputs,
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idle

sig

Process P1a

taskType

contTask sig1
to P3

idle

TaskType0TaskType1

newtype TaskTypes
   literals   
      TaskType0, 
      TaskType1;
endnewtype;

DCL t_id Tid;
DCL p Natural;
Timer t;

t_id := taskId;
p := taskPrio;

else

idle

idle

t

contTask sig2
id t_id  prio (p+1)
to P3

SET(now+1.0, t)

idle

newTask sig
type   TaskType0  prio 0
to P1a

Process P0 Process P3

idle

idle

sig1,
sig2

Figure 8.6: Example (continued) of a local SDL real-time task.

which is presented by two examples in process P1a, the keyword is also allowed in timer set
statements to create timer-based task signals of an existing real-time task. Keyword contTask
optionally allows to assign a priority and a task id of a previous SDL real-time task to the newly
created task signal. If contTask is used without any task attribute – like in the left branch of
the transition consuming sig in process P1a

4 –, the created task signal inherits the id and the
priority of the consumed signal. In this case, the task continuation is called implicit task forking.

If a task id is specified explicitly, a previous real-time task can be continued (explicit task
forking). This is shown in process P1a in the transition consuming timer signal t5, where the
task id of sig, which has previously been stored in variable t_id, is used. In addition, the
priority that has been stored in variable p is also reused and increased by one. Thereby, the
transition execution triggered by task signal sig2 continues the real-time task with one priority
level less. Different from task signal priorities, task types are a property of the SDL real-time
task and not of the task signal, and can, therefore, neither be changed by implicit nor by explicit
task forkings.

In the example, the right branch of process P1a is taken, since the consumed signal sig is of
type TaskType0. Due to explicit task forking, the task is continued with signal sig2 in the transi-
tion consuming timer signal t. Since there is no further task forking in process P3, the real-time
task terminates after the consumption of sig2. Thus, the real-time task of the example consists
of two transition executions, which are triggered by task signals sig and sig2, respectively.

4Note that this left branch is not taken in the example, since the type of the real-time task is TaskType0.
5Note that explicit task forkings are possible both in transitions executed in the context of an SDL real-time task

and in ordinary transition executions.
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8.3.3.2 Implications on Transition Execution Order

A transition consuming a task signal is executed in the context of the real-time task, whose at-
tributes are carried by the task signal. In this regard, the priority of the transition execution is
also derived from the task signal priority of the consumed signal, which implies that one tran-
sition can run with different priorities. In order to support this flexibility and to run transitions
according to the task signal priority of consumed signals, the signal consumption order has to
be changed. In particular, when selecting the next transition, the input port of an SdlAgent has
now to be searched for the first task signal with highest priority, which is consumable in the
agent’s current state.

Figure 8.7 explains this step in more detail by means of an example process P4. We assume
that the input port is already filled with six signals, which are ordered according to their avail-
ability time as defined in the SDL standard [Int12c] (illustrated by characters A to F). For signal
sig3 at position F, it is furthermore assumed that the availability time of the signal is larger than
the current system time (now), i.e., the signal is not yet consumable. The signals’ consumption
order is illustrated by numbers 1 to 6 and is basically determined by the following rules:

1. Task signals take precedence over plain SDL signals.

2. Task signals are consumed according to their priority. In case of a tie, their availability
time and insertion order is evaluated.

3. Plain SDL signals are consumed according to their availability time (as in SDL-2010).

Besides these basic rules, there are some exceptions w.r.t. SDL’s save construct and implicit
consumptions. In this regard, more details are given in the formal semantics in Appendix C.

By applying the extended consumption rules, signal sig4 at position C, which has highest
priority 1, is consumed first. Afterwards, sig3 at position E, which is part of the same SDL real-
time task, is consumed. Thereafter, sig4 at position D with task signal priority 5 is chosen. It
is followed by sig3 at position B. Though this signal has no priority – i.e., the priority attribute
was not specified in the signal output –, it is the only remaining consumable task signal in the
input port. Afterwards, the only non-task signal sig4 at position A is consumed. Finally, sig3
is consumed as soon as the system time exceeds the availability time of the signal.

-

S

sig3(v1,v2)

Process P4

/* transition 
    body 1    */

-

sig4

/* transition 
    body 2    */

A: sig4 [task id = null]

B: sig3 [task id = id1, type=T2, prio = undef]

C: sig4 [task id = id2, type=T1, prio = 1]

F: sig3 [task id = id3, type=T0, prio = 3]

...

> now

input port

1
4
5

6
< nowE: sig3 [task id = id2, type=T1, prio = 1]2

D: sig4 [task id = id4, type=T1, prio = 5]3

position in queueconsumption order

Figure 8.7: Changes on signal consumption order due to task signals.
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8.3.3.3 SDL Real-time Tasks in Scheduling-aware System Specifications

Following the idea of scheduling-aware system specifications, we introduce a scheduling op-
tion for SDL real-time tasks, which can be selected in the head symbol of the system specifi-
cation. The new scheduling strategy is called task scheduling. Its selection is shown in Fig. 8.8
for the demon game example. By selecting task scheduling in the head symbol of a system
with task signals, task attributes are interpreted and transition execution orders are derived
from the extended signal consumption rules as illustrated above. If, on the other hand, a dif-
ferent scheduling strategy is selected in a system with task signals, task attributes are ignored
and task signals are treated as regular (non-task) SDL signals. By making task scheduling
compatible with scheduling-aware system specifications, comparative evaluations with other
state-of-the-practice scheduling strategies become possible.

DemonBlockGameBlock

System DemonGame 1(1)

[ Bump ]

C3

C1

C2

[ Newgame,
 Probe, Result,
 Endgame ]

[ Win, Lose,
        Score ]

SIGNAL
Newgame,Probe,Result, Endgame,
Win,Lose,Score(Integer), Bump

strategy = tasks;

Figure 8.8: Selection of task scheduling to support real-time task-aware transition executions.

In the first instance, the selection of a particular scheduling strategy affects only the transition
execution order within SdlAgents. The impact of the strategy on the system-wide execution
order is up to the implementation and the limitations of the hardware. More details on this
topic and a description of all supported scheduling strategies can be found in Chapter 9.

8.3.3.4 Suspension of Real-time Tasks

In [Chr10], process priority scheduling has been introduced with the possibility to temporarily
suspend SdlAgents. This approach has been adopted for SDL real-time tasks to temporarily
prevent the execution of transitions of particular SDL tasks. Thereby, run-to-completion delay
(see Sect. 8.1.2), which is in particular a problem in presence of complex and long-running
transitions, can be reduced.

The incorporation of task suspension and resumption is illustrated in Fig 8.9, where process
P5 creates a non-terminating real-time task in its start transition with SDL timer t, which is
after each expiration again scheduled with identical interval. In the transitions consuming
the signals of this task, the unary function suspendTaskType (resumeTaskType) is invoked to
suspend (resume) all tasks of type BgTaskType, which are assumed to be background tasks
with low priority. Thus, application knowledge is exploited to reduce system load in advance
of time-critical intervals and transition scheduling can be influenced in a scenario-specific way.
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Process P5
newtype TaskTypes
   literals   
      TaskType0, 
      TaskType1,
      BgTaskType;
endnewtype;

Timer t;

idle

newTask 
SET(next, t)
prio 0

next := now +1.0;

tc_section

idle

t

contTask 
SET(next, t)

suspendTaskType
  (BgTaskType)

tc_section

idle

t

contTask 
SET(next, t)

resumeTaskType
  (BgTaskType)

next := 
   next + 1.0;

next := 
   next + 1.0;

Figure 8.9: Suspension and resumption of transition executions of particular task types.

Besides keyword suspendTaskType, the language has been extended with two further key-
words suspendTaskId and suspendTaskPrio to enable flexible task suspension. With suspend-
TaskId, the execution of one specific real-time task, whose id must be obtained by the taskId
operator, is paused. Its corresponding counterpart is resumeTaskId. The function suspend-
TaskPrio takes one parameter declaring a priority threshold, so that all task signals with a
priority value equal to or higher than this parameter are prevented from triggering transition
executions. The complement of this function is resumeTaskPrio, which takes no parameter and
unlocks all task signals that are not suspended by their id or type.

8.3.3.5 Semantical Incorporation of SDL Real-time Tasks

While the full formal incorporation of SDL real-time tasks into SDL’s dynamic semantics is
presented in Appendix C, this subsection provides a brief overview of necessary changes and
extensions. The starting point of the incorporation is Annex F3 of SDL-2000 [Int00], since SDL’s
formal ASM semantics have not yet been updated in the current SDL-2010 standard [Int12c].

Table 8.1 classifies the necessary changes into four categories and presents the corresponding
scope of changes. Scheduling awareness summarizes all extensions that are required to enable the
selection of task scheduling in the head symbol of the SDL system. Since selecting a scheduling
strategy has its major impact on the SDL implementation and not on the formal semantics,
semantical extensions of this category are actually minor and consist of seven Lines of ASM

ASM domains ASM functions ASM macros affected
new changed new changed new changed LOCs

scheduling awareness 1 0 5 0 0 1 7
task attributes 7 3 8 0 1 5 50
suspension/resumption 2 1 3 0 4 1 30
transition selection 0 1 4 0 4 2 138

Table 8.1: Scope of semantical extensions.
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select
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Input
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new 
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Figure 8.10: New task signal-specific activity phase as subphase of an SdlAgent’s transition se-
lection phase (phases with double border are refined in separate diagrams) [Int00].

Code (LOC) only. To formally define task attributes in ASM – including their creation with
task actions, their association with task signals, and access to them via task operators –, more
extensions were required and several new ASM domains, functions, and macros have been
added or changed. The same holds for task suspension and resumption.

Due to numerous features regarding the selection of transitions – including enabling con-
ditions, saving of signals, and inheritance of transition specifications –, most changes and ex-
tensions of SDL affect the category transition selection. In this regard, a total of 138 LOCs were
added to realize the extended consumption order of task signals as illustrated in Sect. 8.3.3.2.
These LOCs mainly implement a new task signal-specific activity phase, which is called se-
lectTaskInput and part of the transition selection phase of SdlAgents (see Fig. 8.10). Since the
new phase precedes all existing phases and, in particular, the selection of priority inputs, it
is guaranteed that (consumable) task signals take precedence over any non-task signal. Sub-
phases of the selectTaskInput phase and their realization in ASM can be found in Appendix C.

8.3.4 Integration of SDL Real-time Tasks into the SDL Environment

In the first instance, SDL real-time tasks require extensions to SDL signals and changes of the
transition selection order. Thus, they are independent of a concrete hardware platform and
the realization of the SDL environment. However, to support distributed SDL real-time tasks,
extensions of the SDL environment become necessary.

When a task signal, which is created in the SDL system and sent to the system’s environment
in order to communicate with another node, is received by the SDL environment, task attributes
of the signal have to be appended as payload to the outgoing physical signal. Thus, the concrete
realization depends on the desired communication technology, which must meet prerequisites
to enable the transfer of task attributes as additional payload. On the receiving side, the SDL
environment has to gather these task attributes from the received physical signals in order to
generate task signals accordingly before sending them to the SDL system.
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8.3.5 SDL Real-time Tasks in SDL-MDD

A big advantage of SDL is the availability of holistic model-driven development processes. This
advantage is still given with the incorporation of SDL real-time tasks, which can also be applied
in compliance with reusability concepts like SDL patterns and micro protocols [Got07]. Though
real-time tasks are primarily motivated by the request for more predictable implementations,
they improve also the expressiveness of the design. In particular, priorities of task signals are
not only instructions for implementations, but introduce general prioritizing extensions of the
transition selection, thereby affecting the behavior of SDL systems in analyses, simulations, and
implementations. Consequently, it is reasonable to introduce SDL real-time tasks in the PIM of
SDL-MDD (see Sect. 7.2).

Compared to prioritization measures of state-of-the-practice approaches, which introduce
SDL process, block, or signal priorities in a separate implementation phase, SDL real-time tasks
benefit from a priority model at design level that is maintained in implementations. Thereby,
assigning priorities in a separate implementation phase becomes obsolete. Additionally, the
priority model of SDL real-time tasks enables a more flexible priority assignment that is inde-
pendent of the system’s block and process structure.

To improve the application of SDL real-time tasks in the context of SDL-MDD, existing design
guidelines, which have been proposed in conjunction with SDL-MDD [BCG09], can be adopted.
In particular, the guideline to split long-running transitions into shorter ones is also beneficial
for SDL real-time tasks to reduce run-to-completion delays.
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8.3.6 Example: RTS/CTS Handshakes as Distributed SDL Real-time Tasks

In the following, a realistic but simplified example of a distributed SDL real-time task is given.
The example realizes an RTS/CTS handshake and utilizes the MAC layer of Fig. 8.3, which is
refined in Fig. 8.11 with all relevant transitions.

The example assumes a single-hop network of three nodes (N0, N1, and N2), which all run the
same SDL system, and that N0 is going to send data to N1. When at N0, the transmission request
arrives in process contTxRx by signal tx, a new SDL real-time task of type RTS_CTS is created,
where the first signal of this task (contTx) is assigned with priority 2. In the same transition,
attributes of the previous real-time task, which are included in signal tx, are furthermore stored
in the state of the SdlAgent.

In the transition consuming contTx in process csma, the priority of the task signal is stored in
the content of the data frame, i.e., it is transferred as additional payload. Afterwards, the run-
ning real-time task is continued with priority 1 after waiting a random backoff delay. Shortly
before the RTS frame is going to be sent, suspendTaskPrio is called to suspend real-time tasks
with priority values of≥ 2. Thereby, run-to-completion delay is avoided when the RTS frame is
sent to the environment by signal cc2420_send shortly afterwards. By calling resumeTaskPrio,
suspension is again canceled. When the RTS frame arrives at the environment (not shown in
the figure), the environment appends task attributes of the running task to the payload of the
frame before it leaves the node via the CC 2420 transceiver. Note that at this moment, two pri-
orities are included in the payload of the frame: First, the priority that is explicitly inserted in
process csma (value 2 in this case) and describes the priority of the frame content. And further-
more, the task signal priority that is implicitly inserted by the environment (value 1), which
describes the priority of the transmission itself.

When receiving the RTS frame at nodes N1 and N2, the SDL environments of both nodes
read the task attributes from the payload of the received frames and accordingly create task
signals of type cc2420_recv, which are afterwards sent into the SDL system. In process nav,
this task signal is consumed and the priority of the frame content is derived from the remaining
payload of the frame and used to continue the RTS/CTS handshake if the frame is destined for
this node. This is the case for node N1, where task signal rxRts is created and sent to process
contTxRx, thereby causing the response with a CTS frame. On N2, vcca is sent to process csma
to announce the network allocation vector for virtual carrier sensing. Since this information is
very time-critical, vcca is sent with maximal priority 0.

The transmission of the CTS frame by node N1 is similar to the RTS frame but without ran-
dom backoff. By applying task suspension, non-desired delays are kept minimal, too. After
finally receiving the CTS frame in process contTxRx at node N0, the RTS/CTS real-time task
terminates and the data transfer task is resumed by consulting the stored task attributes.

The formal definition of the RTS/CTS real-time task is given in Fig. 8.12. Besides explicit
transitions, the formal definition of the transition set T includes further transitions like implicit
consumption and transitions of the environment. When sending the RTS frame via the environ-
ment, the task execution tree, which visualizes the transition execution order of the real-time
task, forks into two branches; one branch for transition executions on N1 and N2, respectively.
Though the real-time task and its transition executions are nonrecurring, other real-time tasks
of RTS/CTS handshakes may look similar.
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Block MacLayer

Process contTxRx

newtype TaskTypes
   literals   RTS_CTS, DATA_TRANSFER, ...;
endnewtype;

Process csma

Process nav

DCL t_id Tid;
DCL t_prio Natural;
DCL dest Address;
DCL oFrame, iFrame, rtsFrame, rFrame Octet_string;

tx
(iFrame, dest)

oFrame := call createDataFrame
      (iFrame, dest);
rtsFrame := call createRtsFrame
      (iFrame, dest);
t_id := taskId;
t_prio := taskPrio;

idle

wait4CTS

newTask contTx
 (rtsFrame, DIFS,
 CW_MIN, CW_MAX)
 type RTS_CTS
 prio  2

rxCts
(rFrame)

wait4CTS

idle

contTask contTx 
 (oFrame, SIFS,
  0, 0)
  id t_id
  prio t_prio

rxData
(rFrame)

wait4Data

idle

contTask rx 
 (rFrame)

[rx]

[tx]

rxRts 
(rFrame)

ctsFrame := call
   createCtsFrame
      (rFrame);

contTask contTx 
 (ctsFrame, SIFS,
 0, 0)

wait4Data

idle

[contTx]

DCL t Time;
DCL iFrame, 
       oFrame 
     Octet_string;
DCL ifs Duration;
DCL min, max 
     Integer;
Timer waitT;

idle

contTx (iFrame,
 ifs, min, max)

t := now + ifs + call 
   calcBackoff (min,max);
oFrame := call 
  insertPrioInFrame
        (iFrame, taskPrio)

contTask SET (t-DELTA,
     waitT)  prio 1

wait4TxPre

 waitT

idle

contTask 
cc2420_send (oFrame)

*

vcca (t)

wait4Chan

contTask  SET(t, waitT)

waitT

idle

idle

cc2420_recv
(frame)

idle

dest

DCL dest Address;
DCL frame Octet_string;
DCL t Time;
DCL fType FrameType;
DCL t_prio Natural;

taskType

contTask 
   vcca (t)
   prio 0

dest := call getAddress(frame)
fType := call getFrameType(frame)
t_prio := call getTaskPrio(frame)

t := call 
  calcBusyTime(frame)

ftype

else
SELF_ADDRRTS_CTS

else

contTask 
rxRts (frame)
prio t_prio

contTask
rxCts (frame)
prio t_prio

contTask 
rxData (frame)
prio t_prio

CTSRTS
else

[cc2420_recv]

[rxRts,
rxCts,
rxData]

[vcca]

[cc2420_send]

wait4Tx

waitT

resumeTaskPrio

suspendTaskPrio(2)

contTask  SET(t, waitT)

resumeTaskPrio

wait4TxPre

Figure 8.11: Transitions of block MacLayer to illustrate an RTS/CTS handshake as example for
distributed SDL real-time tasks.
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Network nodes and transition specifications:

N = { N0, N1, N2 }
T = { contTxRx.idle(tx),

contTxRx.idle(rxRts),

contTxRx.wait4CTS(rxCts),

contTxRx.wait4Data(rxData),

csma.idle(contTx),

csma.wait4TxPre(waitT),

csma.wait4Tx(waitT),

csma.idle(vcca),

csma.wait4TxPre(vcca),

csma.wait4Tx(vcca),

csma.wait4Chan(vcca),

csma.wait4Chan(waitT),

nav.idle(cc2420_recv),

env.idle(cc2420_send),

env.idle( f rame),

implicit consumption }

Transitions in T are given in the following for-
mat:

PROCESS_NAME.PROCESS_STATE(TRIGGER)

A real-time task of a successful RTS/CTS hand-
shake looks like follows:

τrts/cts = (τid, Te, ftransition, fprio, fnode,<eo),

where τid is a unique id and Te = {t0, t1, . . . , t17}
a set of 18 transition executions.

<eo is given by the edges of the transi-
tion execution tree on the right-hand side.
ftransition, fprio, and fnode are given in the vertices
of the execution tree, which are built as follows.

ti fnode(ti)

ftransition(ti)

( fprio(ti), ftype(τrts/cts))

t0 N0
csma.idle(contTx)

(2, RTS_CTS)

t1 N0
csma.wait4TxPre(waitT)

(1, RTS_CTS)

t2 N0
csma.wait4Tx(waitT)

(1, RTS_CTS)

t3 N0
env.idle(cc2420_send)

(1, RTS_CTS)

t4 N1
env.idle(frame)
(1, RTS_CTS)

t5 N1
nav.idle(cc2420_recv)

(1, RTS_CTS)

t6 N1
contTxRx.idle(rxRts)

(2, RTS_CTS)

t7 N1
csma.idle(contTx)

(2, RTS_CTS)

t8 N1
csma.wait4TxPre(waitT)

(1, RTS_CTS)

t9 N1
csma.wait4Tx(waitT)

(1, RTS_CTS)

t10 N1
env.idle(cc2420_send)

(1, RTS_CTS)

t11 N0
env.idle(frame)
(1, RTS_CTS)

t12 N0
nav.idle(cc2420_recv)

(1, RTS_CTS)

t13 N0
contTxRx.wait4CTS(rxCts)

(2, RTS_CTS)

t14 N2
env.idle(frame)
(1, RTS_CTS)

t15 N2
nav.idle(cc2420_recv)

(1, RTS_CTS)

t16 N2
csma.idle(vcca)
(0, RTS_CTS)

t17 N2
csma.wait4Chan(waitT)

(0, RTS_CTS)

Figure 8.12: Definition of a concrete real-time task of a successful RTS/CTS handshake.
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8.4 Discussion

SDL real-time tasks address a shortcoming of SDL and all previous prioritization measures,
which has limited the applicability of SDL in real-time systems: The lack of prioritization
schemes that are orthogonal to the static system structure. Since priorities are assigned to
transition executions dynamically, SDL real-time tasks do not suffer from a static mapping
of transition specifications to priorities. Prioritization with SDL real-time tasks is very flexible,
because the assignment of different priorities to subtasks or to single transition executions of
the same task becomes possible. In addition, time-dependent privileges are supported by cal-
culating task signal priorities as a function of the task’s urgency. While this is in general less
powerful than dynamic scheduling strategies like Earliest Deadline First (EDF), it is sufficient
for many considered applications and efficient to implement.

Though the integration of SDL real-time tasks into SDL’s semantics, which is presented in
this chapter, affects the order of transition executions within single SdlAgents only, the pre-
sented extensions are also well-suited to direct the agent-spanning serialization of transition
executions in implementations. This fact is contemplated in Chapter 9 in detail. By introducing
distributed tasks, SDL real-time tasks address another drawback of SDL: The node-spanning
identification of system tasks. This is achieved with SDL real-time tasks by communicating
task attributes consisting of task identifiers, task types, and task signal priorities.

To highlight differences between SDL real-time tasks and existing prioritization measures
of SDL and prior extensions, Table 8.2 presents a comparative survey w.r.t. the three types of
delays (see Sect. 8.1.2). Though serialization delay is usually considered in implementations
and not on design level, since all agents run concurrently in the conceptual execution model of
SDL, it is included in the table for the sake of completeness.

The least powerful language constructs regarding prioritization are SDL signal priorities,
which are introduced in SDL-2010 [Int12c]. Because they are only considered if two signals
have the same availability time, they are inappropriate to privilege transition executions in im-
plementations, where usually only SDL timers but no regular signals can have identical avail-
ability times.

Priority inputs are also included in the SDL standard and have been improved in SDL-2010
[Int12e] by introducing multiple priority levels. Besides the drawback that they are statically

queueing serialization run-to-completion
delay delay delay

SDL signal priorities X X X
priority inputs X X X
process priorities w/o suspension X X X
process priorities with suspension X X X
SDL real-time tasks w/o suspension X X X
SDL real-time tasks with suspension X X X

Table 8.2: Comparison of prioritization measures. (X – delay not addressed, X – reduction of
delay possible)
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assigned to a structural element, i.e., to a transition in one particular state of an SDL process,
their major limitation is their missing impact on serialization and run-to-completion delay.

Process priorities are actually not part of SDL but supported by many tools. In our previous
work [CBG11], we also proposed the annotation-based incorporation of process priorities into
SDL. As it turned out, their influence on transition execution orders is, however, not sufficient,
since they cannot privilege transition executions within an SdlAgent. Thereby, they cannot re-
duce queueing delays. As a further drawback, process priorities are assigned to structural
elements (SDL blocks or processes) only. Thus, they reach their limits if transitions within the
same SDL process are shared by system tasks with different priorities. In conjunction with
process priorities, our previous work [CBG11] introduces process suspension in SDL, which
addresses run-to-completion delay for the first time.

By assigning priorities dynamically, SDL real-time tasks outperform existing approaches. In
particular, they can deal with transitions that are executed in different system tasks (transition
sharing) and allow the re-calculation of priorities depending on the current situation. Since
task signal priorities affect the signal consumption order within agents and can additionally
be consulted for global serialization, they reduce queueing as well as serialization delay of
high priority tasks. By adopting suspension in SDL real-time tasks, run-to-completion delay is
addressed as well. Compared with process suspension, suspension with SDL real-time tasks
is significantly more flexible since suspension is configurable and based on tasks and not on
structural elements of the specification.
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Model-driven Implementation of SDL
Real-time Tasks

Implementing SDL is a perseverative topic in academic and industrial projects. Since the con-
current execution model of SDL cannot be realized one-to-one on real hardware, several im-
plementation alternatives have been proposed. Most of them target at the improvement of
the efficiency of the system. Prioritization, which is often introduced by the assignment of
priorities to SDL blocks or processes, is usually addressed in an additional implementation
phase and with support of an OS, thereby requiring an additional development step and de-
ployment diagrams with implementation-specific information. SDL real-time tasks provide a
novel approach to guide the implementation and to privilege time-critical transitions at run-
time. This approach is more flexible than existing approaches, since prioritization is not based
on static elements of the specification. It is furthermore compatible with the model-driven de-
velopment process SDL-MDD (see Sect. 7.2) and comes without implementation phase, since
all relevant information is included in the SDL specification. Because SDL real-time tasks do
not depend on a specific hardware or software platform, most parts of their implementation
are platform-independent. However, to support distributed SDL real-time tasks, supplemental
platform-specific extensions are necessary in the implementation of the SDL environment.

The implementation of SDL real-time tasks is based on a tool chain, which was the result
of previous academic projects [Fli09, FGW06, FGJ+05]. This tool chain is compliant with SDL-
MDD and consists of the code generator ConTraST, the SVM implementation SdlRE, and the
environment implementation SEnF. Besides these tools, which are available with code sources,
further proprietary software [IBMar] was used to create SDL specifications. Though the tools
allowed extensive modifications, some limitations like missing SDL-2010 support had to be
considered. While these features are, however, not essential for SDL real-time tasks, their ab-
sence prevented quantitative comparisons between SDL real-time tasks and novel prioritiza-
tion measures of SDL-2010 like signal priorities or priority inputs with multiple levels.

This chapter is structured as follows: In Sect. 9.1, challenges of implementing SDL are dis-
cussed. Thereafter, Sect. 9.2 provides an overview of the used tool chain and realization ap-
proach. Sections 9.3, 9.4, and 9.5 summarize changes and extensions of ConTraST, SdlRE, and
SEnF, respectively. Afterwards, Sect. 9.6 presents a simulator framework called FERAL, which
has been extended to run SDL models and performance evaluations of SDL real-time tasks.
Finally, Sect. 9.7 discusses results of this chapter.

The contents of this chapter have been published in [5], [13], [17], [19], [21], and [24].
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9.1 Motivation

Besides achieving high-efficient implementations, the major challenge of implementing SDL
is the adequate serialization of SDL’s concurrent execution model. Since real-world hardware
does not offer the same degree of concurrency as SDL systems, the way of serializing transition
executions affects the behavior of the system and may lead to undesired delays or unconsid-
ered behavior. Since the standard does not prescribe a default or straightforward approach
to order concurrent transition executions, execution orders in implementations are very tool-
dependent. To avoid undesired serialization orders – especially in situations with high system
load –, some tools provide additional measures to guide the serialization process, e.g., by an
additional implementation phase or by annotations in the specification.

To illustrate the impact of serialization on single-core hardware, Fig. 9.1 presents two SDL
processes, which run as two concurrent (but not parallel) SdlAgents in an implementation. In
each process, a timer is set with identical expiration time. Depending on which transition is
executed first, either sig1 or sig2 is created. Since the created signal is consumed as priority
input and cancels the SDL timer t, the respective alternative signal is not generated. If no
further measures like process priorities are used outside the scope of the SDL specification, the
resulting behavior is nontransparent for the designer of the system, nondeterministic, and may,
e.g., depend on the names of processes or – even worse – on their positions in the specification.

In real-time systems, the way of serializing concurrent SdlAgents is not only a problem w.r.t.
transparency but also a problem from a runtime perspective, since delays due to undesired
execution orders may not be acceptable. To reduce delays and to obtain a more predictable
and transparent behavior without manual implementation phase, priority information of SDL
real-time tasks can be used to control the execution and to determine a desired execution order.
The required extensions to our SDL tool chain are summarized in the following.

Process P2

SET(1.0, t)

idle

t

sig2

idle

sig1

next

RESET(t)

Process P1

SET(1.0, t)

idle

t

sig1

idle

sig2

next

RESET(t)

[sig2] [sig1]

Timer t; Timer t;SIGNAL
   sig1, sig2;

Figure 9.1: Example of nondeterministic transition serialization: Depending on the order, in
which the timers are fired in an implementation, different transitions are executed.
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9.2 Real-time Tasks and Model-driven Implementations – Outline

In Sect. 7.2, an SDL tool chain is presented in conjunction with SDL-MDD [Got07], consisting of
the code generator ConTraST [FGW06, Fli09], the SVM implementation SdlRE [FGW06, Fli09],
and the SDL environment implementation SEnF [FGJ+05]. All of these tools have been ex-
tended to obtain a prototypical realization of SDL real-time tasks, which is outlined in the fol-
lowing sections. The tool chain supports the following platforms: PCs with Linux, the Imote 2
sensor platform [MEMara], and the network simulator PartsSim [BGK08]. Since the main target
of SDL real-time tasks are embedded systems, the focus of the implementation was on Imote 2
sensor nodes. However, most applied extensions are platform-independent and, hence, also
available on other platforms. To support simulative evaluations of SDL systems and SDL real-
time tasks, the tool chain has been extended in the course of this thesis to support a further
simulator called FERAL [BCG+13, BCG+14] (see Sect. 9.6). With FERAL, SDL systems can be
simulated either as library, thereby ignoring all runtime delays of the SDL system, or deployed
on Imote 2 nodes to conduct Hardware-in-the-Loop simulations. In the second case, delays to
execute the SDL system and its runtime environment are taken into account and performance
evaluations become possible, which are crucial for the assessment of SDL real-time tasks.

To create SDL specifications, the graphical SDL editor, the SDL-GR to CIF level 0 (SDL-PR)
compiler, and the SDL syntax and semantics analyzer of IBM’s Rational SDL Suite [IBMar] were
used. However, changes and extensions of this tool are very limited, since it is proprietary
and closed source. This particularly affects extensions of SDL’s concrete syntax as proposed
in Chapter 8 and formally defined in Appendix B, which could not be realized in a straight-
forward way, because they would not be accepted by the analyzer and SDL-PR generator of
the SDL Suite. Instead, an annotation-based approach has been implemented. The advantage
of annotations is that they are indeed ignored by the SDL Suite and not checked by the an-
alyzer, but copied to SDL-PR without modification, thereby enabling further processing with
ConTraST.

9.3 Incorporation of Task Actions, Attributes, and Operators

To implement SDL real-time tasks, two complementary strategies are applied. On the one
hand, annotations are used to specify task actions and to create task signals in the specification.
These annotations are then mapped to the implementation by extensions of the code generator
ConTraST. On the other hand, task attributes, task operators, and operators for task suspen-
sion are realized with built-in language features of SDL like syntypes and operators. In the
following, both strategies are discussed in more detail.
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9.3.1 Extended Code Generation with ConTraST

ConTraST [FGW06, Fli09] is an SDL-2000 to C++ transpiler and a result of an academic project.
To pre-process SDL specifications given in SDL-PR, ConTraST utilizes Flex1, a scanner genera-
tor, and Bison2, a generator for parsers based on context-free grammars.

To stay compatible with IBM’s Rational SDL Suite [IBMar], task signals are created by annota-
tion-based task actions. The syntax of the annotations is very similar to the proposed extensions
of SDL’s concrete grammar. They are ignored by the SDL Suite and preserved when translating
the graphical SDL specification to SDL-PR, which is then analyzed and evaluated by ConTraST.
The transformation steps and differences between proposed syntax extensions and annotation-
based realization are sketched in Figure 9.2. In the example, a new real-time task is created by
using keyword newTask in the annotations. When ConTraST evaluates this keyword, it adds
corresponding task attributes to the C++ representation of the signal. W.r.t. the task identifier,
the task scheduler is consulted in order to obtain a new unique identifier.

idle

idle

t

newTask sig prio 0

Process P0

idle

idle

t

sig

Process P0

SDLTASK  newTask
prio 0

Output( 
    new ::SigPackage::Signal::sig(                            
           TaskScheduler::getInstance().createNewTaskId(),  0, SDL_SCHEDULER_UNDEFINED_TYPE
    )
)

proposed SDL extension realization by annotations

     IBM Rational SDL Suite:
SDL-GR to SDL-PR transformation

output
sig
/* SDLTASK newTask
prio 0 */
;

ConTraST: 
SDL-PR to C++ transformation

Figure 9.2: Annotation-based implementation of task actions.

1Fast LEXical analyzer, http://flex.sourceforge.net/
2http://www.gnu.org/software/bison/

http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
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9.3.2 Realization of Task Attributes and Task Operators with Native SDL

To realize data types for task attributes, SDL type synonyms are used. Though a drawback of
type synonyms compared to novel data types is the reduced type safety, the chosen approach
is compatible with the editor and analyzer of the SDL Suite and requires very little effort. The
required SDL type synonyms are presented in Fig. 9.3. They are specified in a new SDL pack-
age, which is dedicated to real-time task-related extensions and can be referenced by all SDL
projects in which SDL real-time tasks are applied.

SYNTYPE Tid = Natural ENDSYNTYPE;
SYNTYPE SdlTaskSignalPriority = Integer ENDSYNTYPE;
SYNTYPE SdlTaskType = Integer ENDSYNTYPE;

SYNONYM UNDEFINED_TASK_ID Tid = 0;
SYNONYM UNDEFINED_TASK_PRIORITY SdlTaskSignalPriority = -1; 
SYNONYM UNDEFINED_TASK_TYPE SdlTaskType = -1;

Figure 9.3: Realization of task attributes as SDL type synonyms.

Compared to the SDL data types that have been introduced for task signal priorities and
task types in Sect. 8.3, their syntype-based realization differs in some points. For task signal
priorities, integers instead of natural numbers are used, and−1 is selected to refer to undefined
task signal priorities (see also element undefined of domain TASKPRIORITY in SDL’s extended
formal semantics in Listing C.2). Regarding task types, SDL’s built-in integer type is applied
instead of type generators with literals. Accordingly, a designer has not to add a new literal but
a scenario-specific integer synonym when introducing a new task type in an SDL specification.
In this regard, a synonym UNDEFINED_TASK_TYPE is predefined to refer to undefined task types
in a scenario-independent way.

The realization of task operators is based on SDL’s support for operator definitions and is
outlined in Fig. 9.4. In the figure, only taskId is shown in detail, whereas for taskPrio and
taskType, only signatures are presented. All operators actually delegate invocations to the
implementation of the task scheduler (see also Sect. 9.4.2), which stores context information
about the current transition execution and returns the corresponding task attribute. If at the
moment of invocation not task scheduling but a different scheduler runs, taskId would by
default return the value for an undefined task identifier. Operators for task suspension and
resumption are also realized by SDL operators, which – similar to task operators – delegate
calls to the task scheduler.
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NEWTYPE SdlTaskOperators

OPERATORS
  taskId: -> Tid;
  taskPrio: -> SdlTaskSignalPriority;
  taskType: -> SdlTaskType;

OPERATOR taskId; RETURNS result Tid;
START;
task''
/*#CODE
#ifdef SCHEDULING_TASKS
  #(result) = TaskScheduler::getInstance().getCurrentTaskId();
#else
  #(result) = #(UNDEFINED_TASK_ID);
#endif
*/;
RETURN result;
ENDOPERATOR taskId;

...

ENDNEWTYPE;

Figure 9.4: Realization of task operators.

9.4 SdlRE– An SVM Implementation with SDL Real-time Tasks

SdlRE is an SVM implementation for SDL-2000 and written in C++. It is responsible for system
initialization, the transfer of SDL signals, and scheduling of transition executions.

A main objective of SdlRE is to be high compliant with SDL’s dynamic semantics as specified
in Z.100 Annex F of the SDL-2000 standard [Int00]. However, as a real-world implementation,
there are several major differences from the ASM semantics of SDL: The largest difference is
the reduced degree of concurrency. Another difference is the compilation of quantifications in
ASM into iterations in C++ [PvL03b]. Though this second difference is not really a difference
from a functional point of view, it leads to a large mismatch from a performance perspective,
since the statement of a simple quantification in ASM may result in expensive loops. To deal
with such problems, implementation optimizations – like software caches [Krä13b] – have been
proposed. A further difference arises due to the semantics of an ASM move, which requires that
each update set is consistent [BS03]. This definition forbids the assignment of different values to
the same location3 within the same move.4 This strict limitation does not hold in imperative or
object-oriented programming languages and was exploited for further optimizations in SdlRE.

To allow comparison evaluations with different scheduling algorithms, SdlRE includes a
scheduling framework [Chr10] with several single-thread schedulers. Currently supported
strategies are summarized in Table 9.1. The table also contains the SDL keywords to select
the strategy in scheduling-aware system specifications (see also Sect. 8.2). All strategies are on-
line strategies [Liu00] and event-driven, i.e., scheduling is done at runtime without knowledge
about future workload and transitions are executed when they are firable and not at predeter-

3In broad terms, locations correspond to persistent variables.
4To subsequently change the same location to different values, multiple moves are necessary, where each move

is the result of one ASM program execution.
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mined points in time. Though this class of schedulers generates more overhead at runtime, it
can deal with the actor model of SDL best. None of the schedulers supports full preemption,
i.e., a transition execution must be finished before another transition execution can start.

The table includes two strategies that have been developed in the course of this thesis: A
signal-based FCFS strategy (FCFSsignals) and task scheduling (Prioritiestasks), a priority-based
strategy for real-time tasks. Different from real-time task-aware transition selection in Chap-
ter 8, task scheduling serializes transition executions system-wide. It is discussed in more de-
tail in Sect. 9.4.2. But at first, Sect. 9.4.1 summarizes extensions of SdlRE regarding creation and
control of task signals.

9.4.1 Task Attributes, Task Actions, and Task Operators

To implement task signals, data structures of SDL signals (plain signals as well as timers) are
extended to store task attributes. These attributes consist of task identifier, task type, and task
signal priority and are now part of all signals. In case of a non-task signal, they are set to an un-
defined values (see also Fig. 9.3). Global uniqueness of task ids is ensured by dividing identifiers
into a locally unique part and a part containing the unique node id. Currently, identifiers are
of 32 bits size, where 8 bits are reserved for the node id and 24 bits store the local part, which
is incremented each time a new task is created. If an overflow occurs at the local part, it starts
from beginning. Consequently, clashes of ids may arise in theory but are hardly a problem
in practice. In systems with non-terminating or many long-living SDL real-time tasks, further
measures are conceivable to guarantee uniqueness, e.g., enlarging local parts or blacklisting ids
of active real-time tasks.

Regarding task actions, no further adaptations are required in SdlRE, because required code
is already generated by ConTraST. Task operators, which allow access to task attributes of con-
sumed signals, only require an interface to the scheduler to get context information about the
running transition.

9.4.2 Task Scheduling – A Scheduling Strategy for SDL Real-time Tasks

To execute transitions according to task signal priorities, the scheduling strategy task scheduling
has been devised. The strategy does not only realize the priority-based transition execution
order within an SdlAgent but additionally serializes transition executions of concurrent Sdl-
Agents. Links and SdlAgentSets are not explicitly considered but implicitly executed.

9.4.2.1 Mode of Operation

Figure 9.5 presents the mode of operation of task scheduling: The scheduler works on three
global queues: The first queue stores all waiting signals, i.e., task signals and non-task signals
whose arrival time is larger than now, and is sorted by the arrival time of the signals. Elements
stored in this queue are SDL timers, signals over delaying SDL channels, signals with activation
delay, and real-time signals [KBCG11]. Task signals whose arrival time is smaller than or equal
to now are stored in a queue with ready task signals, which is sorted by task signal priorities.

The third queue does not contain signals but ready SdlAgents and is sorted by FIFO. By storing
SdlAgents and not signals, different transition triggers like continuous signals or spontaneous
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CPU

task id

task signal priority

task type

ready task signals

priority

ready SdlAgents

FIFO

waiting signals

availability time

task signal

regular signal

SDL agent

1

2

now > arrival
task signal

regular signal

Figure 9.5: Outline of the mode of operation of task scheduling.

transitions are supported. In this regard, ready means that the SdlAgents have potentially firable
transitions. Whether there is actually a firable transition is not always decidable at this point
in time, if, for instance, enabling conditions or continuous signals come into play. It is even
possible that a transition of an SdlAgent becomes firable without change of the agent’s state, if,
for instance, conditions depend on system time.

In addition to the three global queues, each SdlAgent holds a signal queue that corresponds
to its input port as specified in the SDL semantics [Int00]. Note that in case of task signals,
signals are stored both in the agent’s input port and in the global task signal queue.5

When searching for the next SdlAgent to be executed, the dispatcher of the runtime environ-
ment consults the scheduler, which first searches for consumable task signals, since they take
precedence over other transition triggers. If there is no such signal, an SdlAgent with a different
transition trigger is executed. Listing 9.1 presents the corresponding function in pseudo code.

1 function getNextAgent ( ) {
2 scheduleExpiredSignals ( ) ;
3

4 // Search for consumable task signal with highest priority
5 foreach ( s in t a s k S i g n a l s ) do {
6 i f ( ! isSuspended ( s ) ) {
7 switch ( getConsumptionType ( s ) ) {
8 case t r a n s i t i o n I n p u t :
9 currentTaskId = s . taskId ;

10 c u r r e n t T a s k P r i o r i t y = s . p r i o r i t y ;
11 currentTaskType = s . type ;
12 t a s k S i g n a l s . del ( s ) ;
13 return s . agent ; // Return the agent holding this signal
14 case i m p l i c i t T r a n s i t i o n I n p u t :
15 t a s k S i g n a l s . del ( s ) ;
16 break ;
17 case savedInInport :
18 break ;
19 default :
20 break ;
21 }
22 }
23 }

5Strictly speaking, references to the signals and no signal copies are stored to save memory.
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24

25 // Execute environment or agents with non-task signal triggers
26 currentTaskId = undefined ;
27 c u r r e n t T a s k P r i o r i t y = undefined ;
28 currentTaskType = undefined ;
29 i f ( agents . empty ( ) )
30 return SDL . getEnvironment ( ) ;
31 e lse
32 return agents . begin ( ) ;
33 }

Listing 9.1: Pseudo code determining the SdlAgent to be executed

The first step when determining the next agent is removing expired signals from the waiting
signal queue. This is done by function scheduleExpiredSignals() in line 2, which either inserts
expired signals into the list of task signals or enqueues the owning SdlAgent in the agent queue.
Afterwards, the list of task signals is searched for consumable and non-suspended task signals
(lines 5-23). Here, it is additionally checked whether a non-suspended task signal is saved,
which can occur either due to an explicit SDL save or due to a non-matching enabling condi-
tion. If this is the case, the signal is skipped but stays in queue. In contrast, signals implicitly
consumed in the agent’s current state are removed from the task signal queue. Referring to
this, see also Appendix C, where the extended formal semantics gives details on the implicit
consumption of task signals. If there is no consumable task signal, either the environment agent
or the first SdlAgent of the agent queue is executed. The environment, particularly, is executed,
if there is no executable SdlAgent, and may put the hardware to sleep in order to save energy.

To maintain information about suspended tasks, two sets are introduced in the implemen-
tation to store suspended task ids and task types. Additionally, a priority threshold value is
used to suspend tasks by priority. For all three data structures, interfaces have been realized to
enable modifications via SDL operators as described in Sect. 9.3.2.

9.4.2.2 Implementation

So far, the scheduling framework of SdlRE had only consisted of agent-based scheduling strate-
gies. In order to implement task scheduling, extensions for signal-based schedulers were nec-
essary. As a side effect, a signal-based FCFS strategy has been obtained “for free”.

All scheduling strategies in SdlRE are composed of a set of basic schedulers, which are shown
in Fig. 9.6 on the left-hand side. In total, there are six basic schedulers, queueing items – i.e.,
agents or signals – either by priorities, by deadlines, or by FIFO. The basic schedulers indirectly
inherit from an abstract template class called BaseScheduler, which defines a common inter-
face for all basic schedulers. Thereby, access to an instantiated scheduler is possible without
knowledge about its actual implementation.

During compile time, all basic schedulers are determined that are required for the chosen
scheduling strategy. For task scheduling, the resulting object structure is presented in Fig. 9.7.
The object of class TaskScheduler implements the abstract class SchedulerInterface, which
defines a common interface for all scheduling strategies, and references three basic schedulers:
PrioritySignalScheduler to queue task signals by priority, EDFSignalScheduler to store all
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PrioritySignalScheduler

EDFSignalScheduler

FIFOAgentScheduler
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Figure 9.6: Basic schedulers of SdlRE.
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Figure 9.7: Dependencies between task scheduling and basic schedulers.

waiting signals, and FIFOAgentScheduler to store SdlAgents with non-task signal transition
triggers. It is consulted by the dispatcher (ASMRuntime) after each transition execution.

The methods provided by task scheduling are shown in Fig. 9.8. Some of them – e.g., for
adding a new signal to the schedule – are prescribed by SchedulerInterface. Others – like for
accessing the task identifier of the current transition execution – are specific for task scheduling.
To guarantee that there is only a single instance of TaskScheduler, access to the scheduler is via
singleton pattern [GHJV95].

9.4.2.3 Pros and Cons of Preemption

Scheduling strategies with preemption allow the interruption of a task in order to assign the
processing unit to a different and possibly more urgent task [Liu00]. In general, preemptive
strategies achieve smaller blocking times and can reduce reaction times to critical events sig-
nificantly. This, particularly, holds in systems with long-running tasks. As a consequence, they
can solve more scheduling problems than non-preemptive algorithms.
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-taskSignals : PrioritySignalScheduler
-waitingSignals : EDFSignalScheduler
-agents : FIFOAgentScheduler
-currentTaskId : TASKIDTYPE
-currentTaskPriority : PRIORITYTYPE
-currentTaskType : TASKTYPE
-suspendedTaskIds : std::set<TASKIDTYPE>
-suspendedTaskTypes : std::set<TASKTYPE>
-suspendedTaskPrioThreshold : PRIORITYTYPE

-TaskScheduler()
-scheduleExpiredSignals()
+getInstance() : TaskScheduler &
+getCurrentTaskId() : TASKIDTYPE
+getCurrentTaskPriority() : PRIORITYTYPE
+getCurrentTaskType() : TASKTYPE
+createNewTaskId() : TASKIDTYPE
+suspendTaskPrio(p : PRIORITYTYPE)
+suspendTaskId(i : TASKIDTYPE)
+suspendTaskType(t : TASKTYPE)
+resumeTaskPrio()
+resumeTaskId(i : TASKIDTYPE)
+resumeTaskType(t : TASKTYPE)

TaskScheduler

+Add(a : MinimalAgent *, s : SignalInst *, timer : bool)
+Add(a : MinimalAgent *)
+Del(a : MinimalAgent *)
+Del(sig : SignalInst *)
+getNextAgent() : MinimalAgent *
+isReady() : bool
+nextExpiration() : SDLTime &

SchedulerInterface

Figure 9.8: Task scheduling and its common and specific interface methods.

Preemption, however, also has a downside: From an overhead perspective, preemption in-
creases system load, since every preemption introduces context switches and deteriorates cache
hits [BBY13]. This leads, in general, to a reduced predictability and to a more difficult calcu-
lation of WCETs [JSM91]. Furthermore, preemptive algorithms are harder to implement, and
require coordination and restrictive synchronization for the access to shared memory.

In SDL, an additional problem can be observed, when running an SDL system with priority-
based transition executions and a fully preemptive scheduling strategy, i.e., a scheduling strat-
egy that allows the interruption of transition executions at any part of the transition’s body.
This problem can lead to situations, in which high priority transition executions are delayed
because their activation is deferred due to preemption. To illustrate this problem, consider an
SDL transition that runs with priority x + 1 and contains two signal outputs. The first sig-
nal output triggers a transition with priority x, where the second output triggers a transition
execution with a higher priority x − 1. If a fully preemptive scheduling strategy is used, the
processing of the second output is postponed, since the transition triggered by the first out-
put has a higher priority than the current transition execution and is therefore executed first.
Thereby, the activation and execution of the second transition, which is actually most urgent, is
delayed. In summary, this problem is a result of SDL’s asynchronous communication pattern
that both transfers data and activates transitions. It arises, because the order of signal outputs
becomes crucial with a fully preemptive execution. A simple solution would be the re-sort of
signal outputs w.r.t. priorities. This is, however, in most specifications non-intuitive and painful
if, for instance, branches come into play.

Task scheduling avoids these effects by allowing preemption of SDL real-time tasks only with
the granularity of transition executions. As a consequence, interruption within a transition ex-
ecution in favor of a more urgent transition execution is not possible. Thus, task scheduling
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is neither fully preemptive nor non-preemptive, and corresponds to cooperative scheduling
[BBY13], where preemption is allowed at well-defined points, thereby causing substantially
lower synchronization overhead than full preemption. In the context of OSs, scheduling with
such fixed preemption points is also called deferred preemption [Bur94]. With SDL task schedul-
ing, the designer does not need to provide explicit preemption points, since the runtime en-
vironment gets control back after each transition execution. Thus, if complex transitions with
long execution times are forbidden by guidelines (see also [BCG09]), SDL task scheduling rep-
resents a suitable trade-off between a full- and non-preemptive scheduling strategy.

9.5 Demands of SDL Real-time Tasks from the SDL Environment

Though SDL real-time tasks are not an implementation technique for a particular platform,
their main application domain targets embedded systems. Thus, the focus of their implemen-
tation is on the wireless sensor platform Imote 2 [MEMara] (see Appendix A), which is used
as embedded system representatively. The SDL realization for Imote 2 is a bare implementa-
tion without further OS. Thereby, SDL real-time tasks can be evaluated on this platform with-
out any side effects like undesired context switches. Though most parts of their implementa-
tion are platform-independent, platform-specific extensions of hardware drivers are required
to support distributed tasks. In our tool chain, these extensions are provided by SEnF and
summarized in Sect. 9.5.1. In addition, a supplementary implementation technique called early
timestamping is introduced in Sect. 9.5.2, which improves the accuracy of event detection.

9.5.1 Realization of Distributed SDL Real-time Tasks

To realize distributed SDL real-time tasks, task attributes must be appended to outgoing data
and derived from incoming data. For this, the device, on which the data is sent/received, must
support frame-based transmissions. Frame-based transmissions are, for instance, provided by
communication technologies like IEEE 802.3 Ethernet [Ins12b] or IEEE 802.15.4 [Ins11]. The
overhead to transfer task attributes in addition to regular payload depends on the supported
transmission rates and frame sizes. While it can be neglected for technologies like Ethernet, the
overhead can become significant with IEEE 802.15.4-compliant wireless transceiver.

Before transmitting task attributes, they must be serialized and appended to the data frame.
To serialize and deserialize attributes, two methods have been introduced in the implementa-
tion of SDL signals in SdlRE. The serialization methods returns a byte sequence containing all
defined task attributes. It has a minimal length of 1 byte (if signal is no task signal) and a max-
imal length of 13 bytes (if signal is task signal with all task attributes). On the opposite side, a
deserialization method extracts task attributes from a byte sequence.

Distributed SDL real-time tasks have exemplarily been realized in the implementations of the
CC 2420 transceiver. Here, task attributes are appended to frames before they are transferred to
the transceiver, and derived from received frames. Though there are actually no manual actions
required by the designer, the usage of distributed SDL real-time tasks is not entirely transpar-
ent. In particular, it has to be avoided a priori that data frames exceed the maximum frame
length after appending task attributes. In addition, larger data frames increase transmission
times, which has, for instance, to be considered when dimensioning communication slots.
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9.5.2 Early Timestamping

A complementary measure to improve monitoring of events is independent of SDL real-time
tasks and called early timestamping [BCG09]. It requires extensions in interrupt routines of the
environment implementation to timestamp events that are the cause of the interrupts. When
the detected event is later propagated with a regular SDL signal to the SDL system, the stored
timestamp is attached to the SDL signal. This can be realized either by means of an ordinary
signal parameter or by adopting extensions of the SVM implementation like the anonymous
variable sendtime (see related work in Sect. 11.2.8 and [KBCG11]). Without early timestamping,
the point in time of an event is usually not taken until the signal informing about the event is
consumed in an SDL transition. Due to various delays between the occurrence of the event and
the execution of this transition, this timestamp can differ significantly from the actual event,
thereby making the timestamp almost useless. By reading and storing hardware clock values
in implementation-specific interrupt routines, timestamps become significantly more accurate.

To gather more precisely the times of a medium state change, early timestamping has been
applied in the CC 2420 transceiver driver in SEnF. The relevant function is illustrated in List-
ing 9.2. It is invoked during interrupt handling after the transceiver signals a medium state
change via the CCA pin. Here, the driver stores the clock value and the current medium state.

1 /* called when an interrupt on the CCA pin has occurred */
2 void driver_cc2420_CCA_Interrupt ( ) {
3 // store current timestamp and get CCA status from transceiver
4 SEnF_CC2420_Data . ac tua l_ t ime = now ( ) ;
5 SEnF_CC2420_Data . actual_CCA = GPLR(CCA_PIN) & GPIO_BIT (CCA_PIN) ;
6

7 envHasSignals = TRUE;
8 }

Listing 9.2: Early timestamping in an interrupt routine of the CC2420 driver.

In Listing 9.3, the function send_CCA_signal() that is invoked when the environment is ex-
ecuted by the SDL scheduler is shown. In the function, the stored timestamp is appended as a
regular parameter to an SDL signal, which is then sent to the SDL system to report on the CCA
event. Though the shown function is invoked possibly much later than the interrupt routine
from Listing 9.2, the accuracy of the timestamp remains unaffected.

1 /* called by \sdlre during environment polling */
2 void send_CCA_signal ( ) {
3 // send only if there’s a change of the CCA pin
4 i f ( SEnF_CC2420_Data . actual_CCA != SEnF_CC2420_Data . last_CCA ) {
5

6 // Create and initialize SDL signal CC2420_CCA
7 SENF_DECLARESIGNAL(CC2420_CCA , S i g n a l I n )
8 SENF_GETSDLSIGNAL(CC2420_CCA , S i g n a l I n )
9

10 // Assign signal parameters
11 SDL_SIGNAL( S i g n a l I n ) . Param1 = SEnF_CC2420_Data . actual_CCA ;
12 SDL_SIGNAL( S i g n a l I n ) . Param2 = SEnF_CC2420_Data . ac tua l_ t ime ;
13

14 // Save CCA status for comparison to avoid reports with same CCA status
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15 SEnF_CC2420_Data . last_CCA = SEnF_CC2420_Data . actual_CCA ;
16

17 // Send signal to SDL
18 SENF_SENDTOSDL(CC2420_CCA , Signal In , 0 )
19 }
20 }

Listing 9.3: Delivery of the early timestamp as parameter of the SDL signal.

9.6 The Simulator Framework FERAL

FERAL is a Java-based simulation framework [BCG+13, BCG+14]. Its objectives are the rapid
coupling of domain-specific simulators and virtual prototyping for early testing and evalu-
ation of design alternatives. By incorporating various simulators and models with different
abstraction levels, FERAL supports continuous testing of networked systems during different
development phases and enables functional and non-functional evaluation of various commu-
nication technologies.

FERAL distinguishes between two types of simulation components: Functional Simulation
Components (FSCs) modeling the behavior of (networked) nodes and Communication-based Sim-
ulation Components (CSCs) simulating interaction between FSCs. In addition, FERAL supports
bridges and gateways to interconnect different CSCs and to simplify their exchange. FSCs can,
for instance, be native components written in Java or Matlab Simulink6 models. CSCs can be
simulated by ns-37 – thereby supporting various communication technologies like IEEE 802.3
(Ethernet) [Ins12b] and IEEE 802.11 (WLAN) [Ins12a] – or by specialized bus simulators for
CAN [Int04] and FlexRay [Fle10].

To evaluate SDL real-time tasks in the context of FERAL, the simulator and the SDL tool
chain have been extended to support SDL-based FSCs, which are automatically derived from
SDL specifications. In this regard, extensions have been implemented in SEnF, SdlRE, and
FERAL. The required steps to control an SDL FSC’s transition executions by FERAL and to
interconnect SDL FSCs to CSCs are summarized below. Initially, Sect. 9.6.1 presents the real-
ization of SDL FSCs as shared libraries, where the simulator core has full control over time
progress in the SDL system. In this variant, execution times of transitions and the SDL runtime
environment are not considered. Thus, this variant is suitable for functional evaluations of SDL
models and quantitative assessments of the selected communication technologies. Afterwards
(Sect. 9.6.2), a second variant of SDL FSCs is introduced, in which SDL models are executed
on Imote 2 platforms by Hardware-in-the-Loop (HiL) simulations. Thereby, execution delays
can be evaluated and comprehensive performance assessments of SDL real-time tasks become
possible.

6http://www.mathworks.com/products/simulink/
7http://www.nsnam.org

http://www.mathworks.com/products/simulink/
http://www.nsnam.org


146 Chapter 9. Model-driven Implementation of SDL Real-time Tasks

9.6.1 Library-based SDL FSCs for Functional Evaluations

To support SDL-based FSCs, two steps had to be applied: First, parts of the control over tran-
sition executions and time progress had to be moved from the runtime environment of SDL to
FERAL. Second, conversions between SDL signals and simulator messages had to be realized
to integrate SDL models into the data flow of FERAL. Both steps are explained in more detail
below. Since FERAL is implemented in Java but the SDL tool chain is in C++, the Java Native
Interface (JNI8) was used to overcome the language barrier.

Simulation components in FERAL are controlled by directors, where both time- and event-
triggered execution semantics are supported and can even be nested. In the following, the focus
is on FERAL’s event-triggered model, since its semantics is most similar to SDL’s execution
model.9 With this integration, the director that is responsible for an SDL FSC executes the SDL
system in two situations: First, if a timer expires in the SDL system, or, second, if a simulator
message was sent from another FERAL component to the SDL FSC.

The realization of an event-triggered and library-based SDL FSC is illustrated by the simpli-
fied class diagram in Fig. 9.9. With the exception of the SDL system, which is loaded as shared
library and accessed via JNI, all classes are implemented in Java. Each object of the central
SDLEventTriggeredComponent class represents one SDL FSC and can possess several input and
output ports to interact with other FSCs and CSCs. In order to control an SDL FSC’s execu-
tion, the methods defined by the SimulationComponent interface are implemented. They are
invoked consecutively each time the SDL FSC is executed:

• preFire() checks and returns whether the SDL component is enabled to avoid the execu-
tion of a disabled component in the fire() step.

SDLEventTriggeredComponent

<<Interface>>
SDLSimulationComponent

+preFire(nextTime : SimulationTime) : boolean
+fire(now : SimulationTime, stepSize : SimulationDuration)
+postFire()

<<Interface>>
SimulationComponent

-name
OutputPort

-name
InputPort

+messageReceived()

EventProcessingSimulationComponent

+execute(timeS : long, timeNS : long) : SimulationTime
+getInputPorts() : String []
+getOutputPorts() : String []
+setInputPortSignal(name : String, signal : Message, timeS : long, timeNS : long)
+getOutputPortSignal(port : String) : Message

<<Interface>>
SDLInterface

SDLSystem

1
0..*

1
0..*

1

Figure 9.9: Library-based SDL FSC with event-driven execution semantics.

8http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
9Actually, SDL’s time- and event-triggered FERAL integrations are almost identical for library-based SDL FSCs.

With both execution semantics, all firable SDL transitions are executed instantaneously.

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
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• fire() updates the time of the SDL system to the current simulation time. Afterwards, it
executes all firable transitions of the SDL system (see execute(. . . ) of SDLInterface). After
executing the last firable transition, the SDL system returns the time when the next timer
(either an SDL timer or an emulated hardware timer) expires and the SDL FSC should be
executed again by the director.

• postFire() fetches all SDL signals that were sent to the SDL environment during fire(), con-
verts them to simulator messages, and queues them in the corresponding output ports of
the SDL FSC (see getOutputPortSignal(. . . ) of SDLInterface). Afterwards, the messages
are forwarded via links from the SDL FSC’s output ports to the input ports of connected
simulation components.

To transfer messages between simulator and SDL system, the port concept of FERAL, which
is based on named ports, is adopted by SEnF. In more detail, the port concept is reproduced
as follows: For each communication medium supported by FERAL, virtual device drivers are
introduced in SEnF. Thus, SEnF provides, for instance, a device driver for a Point-to-Point (PtP)
medium. Depending on the types of SDL signals that are declared in the SDL specification,
corresponding virtual drivers are instantiated during the initialization of the system, where for
each instantiated virtual driver, one input port and one output port is created. Their names are
fixed and reflect the driver name (e.g., ptp_rx for the incoming port of the PtP medium). After
initializing all required virtual drivers, the created port structure is copied to the Java side of the
SDL FSC to announce available ports in the simulator. This is done by inquiring the names of
all created input and output ports (see getOutputPorts() and getInputPorts() in SDLInterface).
As result, all ports of the SDL system are also known by the simulator core and can be used to
connect an SDL FSC with other simulation components by means of their port names.

If a message is sent from another simulation component to the SDL FSC, this message is
indicated by method messageReceived() and forwarded from the SDL FSC’s input port to the
corresponding input port in the SDL system (see setInputPortSignal(. . . ) of SDLInterface).
For this purpose, simulator messages are converted into SDL signals and buffered in the SDL
environment, until they are further processed when the SDL system is executed.

For illustrative purposes, Fig. 9.10 provides a small simulation scenario with two library-
based SDL FSCs that are connected via a PtP communication medium. The shown object dia-
gram is the result of following startup code:

1 // Setup simulator core and director
2 Scenar io s c e n a r i o = ScenarioImpl . s c e n a r i o ;
3 D i r e c t o r d i r = new D i s c r e t e E v e n t D i r e c t o r (new BasicTopology ( ) ) ;
4 s c e n a r i o . setRootComponent ( d i r ) ;
5

6 // Create simulation components and add to root container
7 SimulationComponent sdl1 = new SDLEventTriggeredComponent ( "Node1" , new

SimulationTime ( 1 , 0 ) , new SimulationTime ( 3 , 0 ) ) ;
8 SimulationComponent sdl2 = new SDLEventTriggeredComponent ( "Node2" , new

SimulationTime ( 1 , 500000000) , new SimulationTime ( 3 , 0 ) ) ;
9 d i r . addComponent ( sdl1 , null ) ;

10 d i r . addComponent ( sdl2 , null ) ;
11

12 // Connect components via ptp
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13 PTPConfiguration ptp_conf ig = new PTPConfiguration ( ) ;
14 ptp_conf ig . setNumberOfPeers ( 2 ) ;
15 PTPSimulationComponent ptp = new PTPSimulationComponent ( ptp_conf ig ) ;
16 d ir . addComponent ( ptp , null ) ;
17

18 // Create and add links between FSCs and CSC
19 Link l1 , l2 , l3 , l 4 ;
20 l 1 = new LinkImpl ( sdl1 . getOutputPort ( " ptp_tx " ) , ptp . get InputPort ( " RX_0 " ) ) ;
21 d ir . addLink ( l1 , null ) ;
22 . . .
23

24 // Start simulator
25 s c e n a r i o . i n i t ( ) ;
26 s c e n a r i o . setEndCondition (new EndTimeCondition (new SimulationTime ( 4 , 0 ) ) ) ;
27 s c e n a r i o . execute ( ) ;

Listing 9.4: Configuration and start of simulation scenario.

Both SDL FSCs and the PtP CSC are controlled by an event-driven director. When creating
an SDL FSC by generating an object of SDLEventTriggeredComponent, a name – „Node1“ and
„Node2“, respectively – is provided, which is also used as reference to the shared library con-
taining the SDL system. At the end of the startup code, the simulation run starts for a duration
of 4 s. However, the SDL FSCs start not before 1 s and 1.5 s, respectively, and terminate at 3 s.

sdl1 :
SDLEventTriggeredComponent

dir : Director

scenario : Scenario

ptp : PTPSimulationComponent

name = RX_0

: InputPort

name = TX_0

: OutputPort

l1 : Link l2 : Link

sdl2 :
SDLEventTriggeredComponent

name = RX_1

: InputPort

name = TX_1

: OutputPort

l3 : Link l4 : Link

name = ptp_tx

: OutputPort

name = ptp_rx

: InputPort

name = ptp_tx

: OutputPort

name = ptp_rx

: InputPort

ptp_config : PTPConfiguration

Figure 9.10: Object diagram of an example scenario with FERAL and two SDL FSCs.
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9.6.2 SDL FSCs with Hardware-in-the-Loop Simulations

The library-based SDL integration into FERAL is well-suited for functional evaluations of SDL
specifications. To consider non-functional properties like execution delays and to assess SDL
real-time tasks, this integration variant is, however, not sufficient. Instead, the observation
of realistic execution delays is required, which is achieved in a second integration variant by
executing SDL models on HiL with the Imote 2 platform. Unlike simulation approaches with
specialized platform simulators (e.g., the Atmel AVR simulators Atemu10 and Avrora11), simu-
lations with HiL do not require detailed models of the hardware to obtain realistic delays and
to get accurate simulation results. The demand for detailed models is, in particular, a problem
for platform simulators if modern hardware comes into play, because the more complex the
hardware is the more expensive is an accurate simulation of all platform characteristics and
optimizations like caches. Thus, a simulation approach with HiL states a practical alternative
for performance evaluations in manageable scenarios.

When simulating an SDL system on HiL with FERAL, the Java part of the SDL FSC only
serves as proxy for the actual execution of the SDL system on the Imote 2. On the Imote 2,
there is similarly a FERAL stub in the SDL environment implementation that interfaces the
SDL model. The concrete interplay between proxy and stub is illustrated in Fig. 9.11. Messages
and commands between them are encoded with ASN.1 [Int08] and sent via a gateway, which
communicates with the proxy by TCP/IP and with the stub on the Imote 2 by the serial inter-
face UART (Universal Asynchronous Receiver Transmitter). To handle UART frame losses and
corruption, timeouts, checksums, and ACKs are incorporated into the communication between
proxy and stub. An advantage of introducing a dedicated gateway is that the node hosting the
gateway and interconnecting the Imote 2 can be physically different from the node running the
simulator, thereby enabling a spatial separation of simulator and HiL.

Abstracting from the communication via TCP/IP and UART, the logical interface of the SDL
FSC with HiL is similar to the interface of the library-based SDL FSC as presented in Sect. 9.6.1.
In particular, simulator messages are converted from and to SDL signals, signals to the SDL FSC

FERAL
core

further 
CSCs, FSCs

node hosting FERAL

SDL FSC for HiL simulation

SDL
simulation 
component

TCP / IP gateway

SDL system on Imote2

SDL
FERAL stub

SEnF

SDL
model

SdlRE

UART
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Figure 9.11: SDL FSC for Hardware-in-the-Loop simulations with FERAL.

10http://www.hynet.umd.edu/research/atemu/
11http://compilers.cs.ucla.edu/avrora/

http://www.hynet.umd.edu/research/atemu/
http://compilers.cs.ucla.edu/avrora/
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are buffered in the SDL environment before executing the model, and outgoing SDL signals
generated by the SDL model are fetched after the end of the SDL model’s execution.

The biggest difference between both variants of SDL FSCs is regarding time progress in the
SDL system: While transition executions are instantaneous and time progress is fully controlled
by the simulator with library-based FSCs, the time of the SDL system with HiL simulations
increases during executions, depending on the speed of the hardware and the workload of the
system. In more detail, the time of the SDL system on HiL FSCs is managed during the FSC’s
fire() step as follows:

• Before executing an SDL transition, the SDL system’s time is set to the same value as the
simulation time, i.e., the clocks of FERAL and Imote 2 get synchronized.

• During the execution of the SDL system, the SDL system’s time increases with the same
rate as the physical time.

• After execution, the clock of the SDL system is stopped, so that there is no further time
progress in the SDL system.

At the end of execution, the time of the SDL system usually precedes simulation time. For
semantically correct simulations and to handle the differences between SDL time and simula-
tion time, the following measures are applied: First, the Java simulation component is informed
about the SDL system’s time at the end of its execution. Second, the SDL system is not executed
until the simulation time catches up and is larger than or equal to the SDL time. Additionally,
to avoid messages from the future, signals sent by the SDL system are delayed until the simu-
lation time is up to the SDL time.
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9.7 Discussion

The implementation of SDL real-time tasks by means of annotations is a trade-off between full
syntactical integration as suggested in Appendix B and possibilities given by available tools.
Different from the incorporation of SDL real-time tasks into SDL’s dynamic semantics (Ap-
pendix C), the implementation of the changed transition selection order goes one step further
by flattening the concurrent execution model of SDL. In particular, by ordering transition ex-
ecutions as a function of task signal priorities system-wide, all three sources of delay as iden-
tified in Sect. 8.1.2 are addressed: Queueing delay by privileging urgent signals within the
same SdlAgent, serialization delay by ordering transition executions system-wide, and run-
to-completion delay by supporting the suspension of SDL real-time tasks. Since task signal
priorities are neither derived from signal types nor from any other structural property of the
system, they can be assigned flexibly and provide an adequate opportunity to privilege urgent
transition executions.

Task scheduling as well as the implementation of task attributes, task operators, and task
actions primarily affect the code generator ConTraST and the SVM implementation SdlRE.
Platform-specific modifications to the environment implementation SEnF have become nec-
essary to realize distributed tasks only. Thus, the SDL specification extended with SDL real-
time task annotations as well as most parts of the implementation are independent of a spe-
cific hardware/software platform and compatible with the model-driven development process
SDL-MDD. As result, SDL real-time tasks are now available on all supported platforms, yet
some implementations to support distributed tasks are missing.

The scheduling strategy for SDL real-time task falls into the class of online [Liu00] and co-
operative scheduling strategies with deferred preemption [Bur94, BBY13]. This means that
scheduling decisions are made at runtime and preemption of SDL real-time tasks is possible,
but only after each transition execution. It is additionally an idling strategy, if suspension is ac-
tivated. In this case, the execution of firable transitions may be delayed due to the suspension
of the containing SDL real-time task. Though the presented implementation of task scheduling
realizes a total order on transition executions, such a strong order is not prescribed by SDL real-
time tasks but was implemented, since the entire SDL tool chain only supports single-thread
execution up to now. With multi-core hardware and after adaptations of the tool chain, parts
of SDL’s concurrency could be retained in compliance with the priority model of SDL real-time
tasks, thereby providing significant benefits w.r.t. performance.

The implementation of distributed real-time tasks additionally requires extensions of SEnF
to communicate task attributes. Thereby, SDL real-time tasks become node-spanning and other
nodes can continue a running task with retention of its priority. Because task attributes are part
of transferred payload, all nodes involved in communication must be aware of the modified
frame content. Thus, it is not possible to use distributed SDL real-time tasks in heterogeneous
environments, in which some nodes cannot handle the modified frames. However, in time-
critical systems – such as found in production environments –, which are the target domain of
SDL real-time tasks, node and system deployment are usually easy to control.

The validation of distributed systems is generally many times more expensive than the eval-
uation of single-node systems. To evaluate SDL real-time tasks in the context of networked
systems without assembling the entire system with real hardware, the simulation framework
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FERAL has been extended to enable SDL-based simulation components. Here, two variants
have been designed: A library-based variant for functional evaluations of SDL specifications
and a HiL variant for quantitative assessments. By enabling HiL simulations with SDL real-
time tasks on Imote 2 nodes, reproducible performance evaluations on a typical embedded
hardware have become possible and large-scale evaluations can be conducted. Due to the in-
corporation into FERAL, SDL real-time tasks can now be evaluated in the context of simulated
networked systems and even with communication technologies that are not directly supported
by Imote 2 nodes such as CAN or FlexRay.



10. CHAPTER

Evaluation of SDL Real-time Tasks
A major objective of model-driven development processes are quality and productivity im-
provements. With SDL-MDD, this is achieved by the automatic transformation of SDL speci-
fications to implementations, which reduces development effort and enables the usage of the
same model on various platforms. As a precondition to achieve this objective, the applied tool
chain must be free of errors, thereby requiring systematic validation of all compilers and run-
time environments, which are applied in any step of the development process. Thus, also SDL
real-time tasks require an exhaustive evaluation of their functional correctness.

In this chapter, we first present the validation of the implementation of SDL real-time tasks
in the utilized SDL tool chain. Afterwards, we investigate the main objective of SDL real-time
tasks, which is the reduction of critical delays and the improvement of their predictability. This
is addressed by performance evaluations, in which average and maximal delays are determined
for time-critical tasks of control systems. In this regard, the identification of task scheduling
overhead provides additional evidence of the practical benefit of SDL real-time tasks. All per-
formance evaluations are executed on the sensor platform Imote 2 [MEMara], which is used as
representative of an embedded system.

The structure of this chapter is as follows: In Sect. 10.1, a motivation is presented discussing
the advantages of experimental evaluations. Afterwards, Sect. 10.2 gives a summary on a test
system, which is used for functional evaluations of SDL real-time tasks, and test results. Sec-
tion 10.3 then outlines results of an extensive performance evaluation of a time-critical system
from the automotive domain. Thereafter, Sect. 10.4 presents further performance evaluations
with a distributed control system and an inverted pendulum, which have been conducted with
FERAL and HiL simulations. Finally, Sect. 10.5 summarizes the results and weighs pros and
cons of SDL real-time tasks.

Evaluation results presented in this chapter have been published in [17] and [21]. Further-
more, the evaluated SDL system of Sect. 10.3 has also been used in [19] and [24] for the assess-
ment of communication systems.

10.1 Motivation

The main objective of SDL real-time tasks is the improvement of the applicability of SDL in
real-time systems. Thus, one purpose of this chapter is the comparison between time-critical
reaction delays that are achieved by applying SDL real-time tasks and task scheduling, and
corresponding delays that are produced with other state-of-the-practice scheduling strategies.
To determine execution times and reaction delays, static analysis and dynamic evaluation tech-
niques can be distinguished [WEE+08]:
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• Static methods are based on the off-line analysis of the system’s code or executable. Their
biggest challenge is the architecture of modern hardware, which introduces various op-
timization techniques like pipelines, caches, and branch prediction to speed-up the sys-
tem. Thus, WCETs of single statements, which are required by static analysis, do not only
depend on the type of statement but also on the history of the system, thereby making
calculation of WCETs very complex and often very pessimistic. Today, such optimiza-
tion techniques can be found on almost all platforms and even on embedded systems:
The PXA 271 processor, for instance, that is installed on the Imote 2 node, provides 32 KB
instruction cache, 32 KB data cache, a 7 stage pipeline, and branch prediction with 128
entries [Cor05]. A further challenge of static analysis is the correctness of assumptions
regarding external events, which serve as input of the system and increase its workload.
This is, in general, a problem for all open systems that interact with their environment,
but is an even bigger issue for wireless systems, where externally caused load is hard to
control.

• Execution times determined by dynamic methods are based on measurements during test
runs of the system. Though dynamic methods can usually not guarantee to evaluate the
worst-case situation, their results are in general more realistic and less pessimistic than
static approaches. This is indeed a problem of static techniques, since they often lead
to overestimated execution times. In [WEE+08], it is even shown that overestimations
increase over the years due to hardware evolution, though there is a permanent improve-
ment of analysis methods and tools. An approach to increase confidence in the results of
dynamic methods are the utilization of statistic methods and the determination of proba-
bilistic WCETs [EB01].

After presenting functional evaluations of SDL real-time tasks, this chapter follows a dy-
namic approach to determine execution delays, where as hardware, the Imote 2 is used as rep-
resentative of an embedded hardware platform. The main reason for using dynamic and not
static methods is reduced effort.1 Though, as consequence, all delays, which are determined in
this chapter, must not be seen as deterministic WCETs, this approach is sufficient to evaluate
SDL real-time tasks and to relate task scheduling to other scheduling algorithms.

10.2 Functional Evaluation of SDL Real-time Tasks

To evaluate new functionalities in the SDL tool chain and for the purpose of regression tests,
a permanently enhanced SDL test system has been built [Krä13b]. The system is more a syn-
thetical test system than a realistic scenario. Its focus is on testing functionalities of the code
generator ConTraST and the SVM implementation SdlRE. Regarding SEnF, only very few parts
are evaluated. Consequently, testing mostly affects code, which is identical for all supported
target platforms. However, the system is mainly intended to run on Linux, since it provides
best possibilities w.r.t. debugging.

1Since SdlRE consists of more than 30,000 lines of code, the costs of an analytical approach would be enor-
mous. Due to extensive usage of dynamically allocated memory and pointers, it is even questionable whether static
analysis is actually possible with the used tool chain [WEE+08].
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Block SdlTaskTest

SdlTaskCtrl
[ runTest ]

[ success ]

SdlTaskRecv

SdlTaskTimer

SdlTaskCont

SdlTaskSusp

SIGNAL taskSuccess, taskFailure;
SIGNAL taskSig0, taskSig1(Integer), selfSig, implConsSig0, implConsSig1;
SIGNAL plainSig0, startTimer, startCont, startSuspension;

SIGNALLIST taskSigs = taskSig0, taskSig1, selfSig, implConsSig0, implConsSig1;
SIGNALLIST taskResult = taskSuccess, taskFailure;

[ (taskSigs), 
   regSig0 ]

[ (taskResult) ][ (taskResult) ]

[ (taskResult) ] [ (taskResult) ]

[ startTimer ]

[ startCont ]

[ startSuspension ]

Figure 10.1: Overview of SDL real-time task-related tests in the SDL test system.

To validate the implementation of SDL real-time tasks, the test system is extended with a
new test category so that the system now consists of 16 test categories. The new tests for SDL
real-time tasks are specified in a separate SDL block (see Fig. 10.1). Besides the SDL process
SdlTaskCtrl, which controls the test of all subcategories, the block comprises four additional
SDL processes testing particular subfunctionalities of real-time tasks. In detail, the following
tests are performed:

• Processes SdlTaskRecv and SdlTaskTimer evaluate the implementation of task schedul-
ing w.r.t. (timer-based) task signals. They particularly test, whether priorities of signals
are realized correctly and whether the signal consumption order is consistent with the
extended SDL semantics (see Appendix C). Furthermore, implicit consumptions and the
correct realization of task attributes and task operators are validated.

• In SDL process SdlTaskCont, continuation of SDL real-time tasks is validated. Here, tasks
are forked both implicitly, i.e. by continuing the currently running task, and explicitly by
resuming a previous task by its task id. In addition, correct inheritance of task attributes
and access to them by task operators is validated.

• SDL process SdlTaskSusp tests the implementation of SDL real-time tasks w.r.t. suspen-
sion. In this regard, all ways to suspend and resume tasks are considered; i.e., suspension
by id, type, and priority. In this respect, it is also checked, whether suspended task signals
are saved in the input port of the SdlAgent and prevented from deletion.

When running the test system, the execution of SDL real-time task-related tests is triggered
by signal runTest that is generated by the overall test coordinator (not shown in Fig. 10.1).
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Currently, the validation of SDL real-time tasks is the 15th test category and produces following
console output:

1 ______ _____ __ _ _____
2 / ___/ | ____| | \ | | | ___|
3 | | | |__ | \| | | |__
4 \___ \ | __| | |\ | | __|
5 ___| | | |___ | | \ | | |
6 /_____/DL |_____| |_| \_|VIRONMENT |_|RAMEWORK
7

8 Version 0.5
9

10 First test: 15.
11 Last test: 15.
12 ---------------------------------------
13 15 - SdlTaskTest started
14 .1 - SdlTaskTest - Receiver test successful
15 .2 - SdlTaskTest - Timer test successful
16 .3 - SdlTaskTest - Task forking test successful
17 .4 - SdlTaskTest - Suspension test successful
18 15 - SdlTaskTest - Successful
19 All tests finished.
20 All testcases succeeded.

Listing 10.1: Output of the SDL test system regarding SDL real-time tasks.

In the console output, each subtest informs about the successful result. If an error would
have occurred, further information would be provided by the responsible SDL process. After
all subtests have reported their outcome, the controlling SDL process SdlTaskCtrl notifies the
overall test coordinator of success/failure.

10.3 Performance Evaluation of SDL Real-time Tasks – Adaptive
Cruise Control

Many real-time systems originate from the control system domain. To assess the improvement
potential of SDL real-time tasks in such systems, evaluations comparing task scheduling with
other state-of-the-practice scheduling strategies are conducted with a scenario from the auto-
motive domain [CBG13]. The scenario is an Adaptive Cruise Control (ACC), whose objective is
to retain a reference speed against disturbance variables. The reference speed is prescribed by
the driver, and disturbance variables are, for instance, aerodynamic drag or incline of the road.
In this context, adaptive means that not only the difference between actual speed and reference
speed is considered but also the distance to and speed of objects in front of the controlled car.
To avoid collisions, a minimal distance to these objects has to be kept by reducing the speed of
the car or by initiating an emergency braking.
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10.3.1 Evaluation Setup

The scenario is a networked system, which is shown in Fig. 10.2 and consists of six nodes
communicate via a CAN [Int04] bus. The SDL system under consideration hosts the control
algorithm, which is a Proportional-Integral-Derivative (PID) controller, and is deployed on the
node that is referred to as ACC in the figure. Amongst others, the ACC node receives three types of
sensor values: Reference speed (sent by node refSpeedSensor), actual speed (actSpeedSensor),
and distance of and speed to other objects (RadarSensor). Based on the received sensor values,
the ACC algorithm calculates new control values and sends them to node Engine, which adjusts
the engine power, or to node Brake to start braking.

CAN

ACC

RadarSensor

Brake actSpeedSensor

refSpeedSensorEngine

Figure 10.2: Network topology of the evaluated ACC scenario.

Motivated by this scenario, the evaluation of SDL real-time tasks now focuses on node ACC. In
particular, not the entire networked system is built but only the ACC system is specified in SDL
and installed on an Imote 2 node. Receptions of sensor values are emulated by the environment
of the system. Though we do not run a real CAN bus and do not evaluate characteristics of the
communication medium, some properties like minimal interarrival times of CAN messages are
taken into account. A positive side effect of running the SDL system as stand-alone system is
that evaluation results are not distorted by communication errors. However, if the objective
is testing the entire networked system and not evaluating SDL real-time tasks locally, a more
comprehensive validation strategy would be required.

The communication schedule of the ACC node is shown in Fig. 10.3 schematically. Its basic
cycle is dictated by the periodical calculation of new control values (every 20 ms) that are af-
terwards sent to the engine via the environment of the SDL system. To achieve a high quality
of control, sensor values used in the calculation should be very up-to-date and control values
should be communicated as fast as possible. This, particularly, requires that all sensor values

t

control interval
(20ms)

actual
speed

reference
speed

control
value

receive and process sensor values 
(actual and reference speed) 

sensor delay dsensors

transfer control value
to CAN controller

periodic task: start of control 
value (engine power) calculation

receptions transmission

control delay dcontroller

guard
time

max sensor delay dsensorsMax

Figure 10.3: Periodic message schedule of the ACC node (without sporadic messages from/to
RadarSensor/Brake).
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are received in time just before control value calculation starts. In more detail, it is crucial to
keep the following two delays small:

• The sensor delay (dsensors) is the time required to process received sensor values and to
forward them on the ACC node from the SDL environment to the responsible SDL process.
In this regard, communication delays to transfer sensor values to the ACC node are not
considered, but time measurement starts after the last sensor value is available in the
SDL environment of ACC. In general, sensor delays are variable. However, to guarantee
the timely processing of all sensor values, an upper bound dsensorsMax must be found and
used to dimension the message schedule. At best, dsensors is very low and without any
jitter in order to derive a low and accurate value of dsensorsMax.

• The time to calculate a control value and to transfer this value from the SDL process
hosting the PID algorithm to the SDL environment is called control delay (dcontroller). The
faster the control value is sent to the environment – and consequently to the engine –, the
faster is the car’s adaption to the current situation. Additional delays introduced by the
communication system to arbitrate the medium and to transfer the control values over
the medium are again ignored for the evaluation.

In addition to the messages shown in the schedule, radar messages are received by the ACC
node. Their reception is also emulated in the SDL environment and occurs sporadically. They
are sent into the SDL system, and can – depending on the reported distances – cause event-
triggered reactions with brake messages. The time between receiving a radar message and
the response with a brake message is referred to as reaction delay dreaction in the following. In
addition to radar and brake messages, sporadic load messages are introduced, which are sent
into the SDL system to evaluate the impact of low priority background load to sensor, control,
and reaction delays. They also provoke response messages, which inform about the end of load
processing.

The SDL system running the control algorithm is presented in Fig. 10.4. The structure is
typical for many systems, because it contains concurrent applications with different priorities,
which share transitions in lower layers. In this case, the CAN block is used by all applications
to fulfill their tasks. In more details, the SDL system comprises the following blocks:

• Block CAN is responsible for the en- and decoding of data from CAN messages into SDL
data types (process ConcatCoder) and the conversion between CAN identifiers and inter-
nal message identifiers (process CANMac).

• The SDL blocks Speed and Distance realize the adaptive cruise control, where Speed
hosts the actual PID controller and Distance provides correction values based on received
radar messages.

• The Load block processes random background load. To determine the impact of load on
the evaluated delays, the system is stressed with different load situations. Because load
is generated by external messages that are received via block CAN, the workload of the
system can be increased by increasing the average frequency of these external messages.
Thus, the same SDL specification is used for various load situations.
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Block Load Block Distance

distanceCtrl

Block CAN

CANMac

lInit

Block Speed

System ACC  /* simplified */

[ actSpeed,
  radar ]

ConcatCoder

[ loadStart ]

[ actSpeed, 
  refSpeed ]

[ canRX ]

[ canTX ]

[ receive ]

[ send ]

[ engineCmd ]

[ correction ]

[ loadEnd ]

speedCtrl
l0

l1

[ brake ]

Figure 10.4: Evaluated SDL system of the ACC node.

To compare task scheduling with common other scheduling algorithms, a set of experiments
has been conducted, in which the SDL system is executed with four different strategies of SdlRE
(see Table 9.1 for their description): FCFSsignals, FCFSagents, Prioritiesagents, and Prioritiestasks.
The agent-based round robin strategy (RRagents) is not considered, because it is too inefficient
by design. The first two strategies, FCFSsignals and FCFSagents, work with a FIFO queue and do
not require further configuration.

SDL process priority

CANMac, ConcatCoder 3
speedCtrl 2
distanceCtrl 1
lInit, l0, l1 4
environment 0

Table 10.1: Configuration of priorities
used by Prioritiesagents.

For (process) priority scheduling (Prioritiesagents),
SDL process priorities have been assigned as pre-
sented in Table 10.1. In general, agents responsible
for control value calculation obtain a higher prior-
ity (i.e., a lower priority value) than load processing
agents. The environment runs with highest priority.

To configure task scheduling, system tasks have
been identified and realized as corresponding types
of SDL real-time tasks. They are outlined together
with affected signals and priorities in Table 10.2. The table also presents the source and desti-
nation of a real-time task, i.e., the processes, in which an SDL real-time task is generated and
terminates, respectively. Here, italic names refer to remote systems, thereby pointing out to
distributed tasks that would require communication via CAN bus if the entire networked sys-
tem and transition executions of other nodes would be evaluated. Priorities of task signals are
assigned, so that background load is disadvantaged. The possibility to suspend real-time tasks
is not utilized in this evaluation.

To exemplify the usage of SDL real-time tasks in this scenario, Fig. 10.5 presents parts of
the speedCtrl process specification, which provides the PID controller. The figure shows the
creation of two SDL real-time tasks: First, a time-triggered and non-terminating real-time task
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task type source destination priority task signals

REF_SPEED refSpeedSensor speedCtrl 4 canRX, receive, refSpeed
ACT_SPEED actSpeedSensor ConcatCoder 4 canRX, receive

ConcatCoder speedCtrl 4 actSpeed
ConcatCoder distanceCtrl 5 actSpeed

CTRL_VALUE speedCtrl speedCtrl 3 controlTimer
ENGINE_REG speedCtrl Engine 3 engineCmd, send, canTX
RADAR RadarSensor distanceCtrl 2 canRX, receive, radar
BRAKE distanceCtrl Brake 1 brake, send, canTX

distanceCtrl speedCtrl 4 correction
LOAD loadSimulator loadSimulator 8 canRX, receive, loadStart

loadEnd, send, canTX

Table 10.2: Types and configuration of SDL real-time tasks in the ACC scenario.

of type CTRL_VALUE, which is responsible for periodic control value calculation and trig-
gered by the timer-based task signal controlTimer. And second, a real-time task of type EN-
GINE_REG, which propagates the new control value and is first associated with task signal
engineCmd. The additional three transitions shown in the figure are also executed in the context
of a real-time task; namely, in tasks of type BRAKE, ACT_SPEED, and REF_SPEED. Since they
are the last transitions of these tasks, no task-related actions are specified in their bodies.

Process speedCtrl
DCL currSpeed, targetSpeed, 
                         corrSpeed Real;
DCL diff, engineCtrlValue Real;
DCL cTT Time := 1000*MiSec;

Timer controlTimer;

idle

actSpeed
(currSpeed)

idle

refSpeed
(targetSpeed)

SET(cTT,
    controlTimer)

idle

SDLTASK  newTask
type  CTRL_VALUE
prio 3

controlTimer

SET(cTT,
    controlTimer) SDLTASK  contTask

engineCmd
(engineCtrlValue)

SDLTASK  newTask
type ENGINE_REG 
prio 3

/* Deviation of current speed  */
diff := targetSpeed - currSpeed - corrSpeed;

/*  calculate new engineCtrlValue  */

/* next calculation of control value */
cTT := cTT + 20*MiSec;

idle

correction
(corrSpeed)

idle

Figure 10.5: Creation of SDL real-time tasks in process speedCtrl.
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10.3.2 Evaluation Results

The following evaluation assesses three types of delay: Sensor delay dsensors, control delay
dcontroller, and reaction delay dreaction. In addition, the overhead of the runtime system is de-
termined. The outcome of the evaluation runs are first stored in the memory of the Imote 2 and
transferred to a PC via a serial interface after the end of the run.

10.3.2.1 Sensor and Control Delays

In the first series of experiments, dsensors and dcontroller are determined for 25 different load situ-
ations. The load situations range from no additional load up to approximately 80% additional
load2, which brings – together with the regular processing of sensor and control values – the
system almost at its limit. Each load situation is repeated five times. In each repetition, 200 sen-
sor values are received and 100 new control values are calculated and sent to the environment.
Thus, the first series consists of 5 · 25 runs for each scheduling strategy. Radar messages are not
used in this series. Hence, the system does not generate brake messages as well.

Sensor Delays Figure 10.6 presents results for dsensors with three different load situations. In
each plot, the cumulative distribution functions of consumed sensor values, which are carried
by SDL signals actSpeed and refSpeed, are plotted as a function of delay for each scheduling
strategy. Points on each line mark the maximal delay after which the latest sensor values are
consumed in process speedCtrl.3 This delay has to be considered when determining dsensorsMax.

In case of no additional load (Fig. 10.6(b)), there are only very small differences and all sched-
ulers achieve almost identical maximal delays of about 1.7 ms. When looking in more detail,
Prioritiestasks is the fastest scheduler and delivers the latest signal about 100 µs faster than the
slowest scheduler Prioritiesagents. These differences are results of different overhead and a
serialization delay, which is caused by process ConcatCoder due to the forwarding of signal
actSpeed to processes speedCtrl and distanceCtrl.

When adding load to the system, results of the schedulers start to differ. In case of 40%
additional load (Fig. 10.6(c)), the maximal sensor delay achieved by Prioritiestasks increases to
1.83 ms, whereas the worst scheduler is now FCFSsignals and requires 2.59 ms to deliver the
latest sensor value. Though all strategies suffer from the background load that constricts the
prioritized processing of sensor values, scheduling strategies different than task scheduling are
more affected due to inadequate transition execution orders. The reason why sensor delays
also increase with Prioritiestasks is found in the lack of full preemption and the missing utiliza-
tion of task suspension. Thus, a transition executed to process background load must first be
finished before a transition that becomes fireable in the meantime can start. Another reason
for the increase of delays, which takes effect to all scheduling strategies and which must not
be neglected, is the higher rate of software and hardware cache misses due to the execution of
additional transitions. Their concrete quantitative impact is, however, hard to determine.

Comparing task scheduling with other schedulers, the increase of delays is much lower. This,
particularly, also holds when comparing with (process) priority scheduling, which is a common

2The load is given as proportional CPU time.
3Note that these values are empirical values and no worst-case bounds. They are often also referred to as

maximal observed execution times [WEE+08] and are not sufficient for hard real-time systems.
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(d) 80% additional load

Figure 10.6: Sensor delays dsensors with three different load situations.

scheduling strategy for SDL implementations and supported by many SDL tools. It is the sec-
ond best strategy for this load situation with a maximal sensor delay of 2.04 ms. Compared to
delays without load, this corresponds to an increase of about 0.3 ms, whereas task scheduling’s
increase is only about 0.15 ms. The worse results of priority scheduling can be traced back to
transitions in block CAN that are executed both in the context of load processing and to for-
ward received sensor values. With process priorities alone, this cannot be distinguished and
transition executions are (wrongly) prioritized in both cases.

With 80% additional load (Fig. 10.6(d)), the difference becomes even more observable. In this
situation, the maximal sensor delay with task scheduling is only 1.88 ms, i.e., the strategy is
almost insusceptible to the additional load. Since the second best strategy, which is priority
scheduling again, has a maximal sensor delay of 2.92 ms, task scheduling requires less than
65% of the time to bring sensor values to their destination SDL process. A further positive
effect of task scheduling is the very low jitter, which is only 370 µs, whereas the jitter with
the second best scheduler is 1300 µs . To sum up, sensor delays and their jitter are much lower
with task scheduling and the upper bound dsensorsMax can be determined much more accurately.
Consequently, the message schedule (see Fig. 10.3) is best realized with task scheduling, thereby
achieving the best quality of control.
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Control Delays Figure 10.7 presents evaluation results regarding control delays by means of
bar plots. The control delay dcontroller is the time between nominal start of control value cal-
culation in process speedCtrl and the reception of the control value by the SDL environment.
It should be as small as possible to enable a fast adaption of the engine to the current driving
situation. The figure shows four load situations, ranging from no additional load up to 80%
background load, where each bar depicts the average, minimal, and maximal control delay.

Without additional load, which is shown in the left part of Fig. 10.7, control values are very
similar and approximately 1.1 ms. When load is added to the system, the delays increase similar
to the sensor delays before. At 10% additional load, the rise is, however, in the main only
observable for maximal delays. In general, these delays increase most for both FCFS strategies
and least for task scheduling. The reason for the small rise of the maximal delay with task
scheduling of about 50 µs is again the lack of full preemption and suspension.

Comparing results with no load and 10% additional load, a very interesting phenomenon
is the reduced best case delay for almost all schedulers. This effect is caused by the absence
of wake-up delays, when the SDL timer triggering the control value calculation expires and the
system just finishes a transition execution of background load.

Increasing the load of the system leads to further deviations between all scheduling strate-
gies. For both FCFS strategies, average as well as maximal delay increase significantly with
rising load. Process priority scheduling and task scheduling, on the contrary, are less prone to
load and converge almost. However, already with very low background load, task scheduling
achieves better control delays than priority scheduling. At 80% additional load, the maximal
reaction delay with task scheduling is about 1.2 ms, whereas priority scheduling requires in the
worst-case 400 µs longer to transfer control values to the environment.

In summary, the results show that fair strategies are inadequate in systems with time-critical
tasks and background load. They also provide evidence that task scheduling is least prone
to background load and performs best in terms of amount and variability of control delays.
Though process priority scheduling achieves still good control delays in the presence of heavy
load, maximal delays with task scheduling are 25% less.
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Figure 10.7: Control delays dcontroller as function of four different load situations.
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10.3.2.2 Reaction Delay

In a second series of experiments with 200 runs, the focus is shifted to sporadic system tasks.
In each run, 50 radar messages are generated in the environment of the SDL system in addition
to regular sensor values. They are sent sporadically with a minimal interarrival time of 35 ms
and require a fast response with brake commands. Thus, their processing is time-critical. To
evaluate these reaction delays dreaction, the time between the generation of a radar message and
the response with the corresponding brake command is monitored. As in the first series of
experiments, the 200 runs are split into 25 different load situations.

Since radar and brake messages are – different from sensor and control values – sporadic
events, they are harder to realize in message schedules. When relying on reserved transmis-
sion slots, pessimistic assumptions must be made on the intervals of the events to provide a
sufficient number of transfer possibilities. In the following, challenges regarding communica-
tion are not considered, but we allow the arrival of radar messages at any time.

Results of the experiment runs are summarized in Fig. 10.8. The left subfigure presents av-
erage values of the reaction delay dreaction, whereas the second plot provides maximal reaction
delays. In both subfigures, delays are plotted as a function of all load situations. Without addi-
tional load, average reaction delays are almost equal for each scheduling strategy, yet the max-
imal delays already differ significantly. In more detail, the maximal reaction delay with task
scheduling is 1.58 ms, whereas the second best scheduler (priority scheduling) has a maximal
delay of 2.54 ms. The source of this difference is the regular processing of sensor and control
values that constrains the prioritized processing of radar messages and brake commands ex-
cept for task scheduling. A further difference between task scheduling and the other scheduling
strategies is the load independence of reaction delays. This holds for average as well as maxi-
mal delays. For instance, the maximal delay at the heaviest load situation is 1.64 ms with task
scheduling, whereas priority scheduling achieves 4.05 ms only. To sum up, both average and
maximal reaction delays are small and almost constant with task scheduling, thereby improv-
ing the empirical determination of an upper bound on dreaction.
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Figure 10.8: Reaction delays dreaction: Time between reception of radar message and transmis-
sion of brake command.
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10.3.2.3 Runtime Overhead

In general, an expected drawback of all measures to decrease delays and jitter is the increase
of overhead. This indeed does not hold for pure (code) optimization techniques like loop un-
rolling [ALSU07] but for most privileging OS scheduling strategies, where, for instance, the
maintenance of a priority-sorted queue is more expensive than of a FIFO queue.4 Additional
overhead is also generated by sophisticated strategies with preemption due to the costs of con-
text switches [Kop97], and to apply countermeasures against priority inversion with priority
inheritance and priority ceiling protocols [SRL90]. To quantify the price of task scheduling,
the overhead of the scheduler is determined in the evaluation scenario and compared to the
other scheduling algorithms. The used system is executed without radar/brake messages and
without background load. For each scheduling algorithm, 10,000 samples are monitored.

The workloads are shown in Fig. 10.9 for each scheduler and subdivided by their type. Note
that the results contain overhead as well as regular workload, i.e., not only times spent in
the runtime environment are included but also pure transition execution times. In particular,
following types of workload are distinguished:

• agent selection describes the time the scheduler requires to determine the next executable
SdlAgent. In case of task scheduling and signal-based FCFS, this workload also contains
the time to select the concrete transition that is executed next.

• transition selection comprises the time to find the next executable transition after agent
selection is complete. For signal-based FCFS and task scheduling, this step is entirely
skipped, since transition selection is completed during agent selection.5

• transition execution is the complete workload to execute transitions. This includes SDL
statements like assignments to variables as well as timer actions and signal outputs.
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Figure 10.9: CPU utilization as function of workload type and scheduling strategy.

4Ignoring possible memory reallocations, complexity of inserting into a FIFO queue is O(1), whereas efficient
implementations of a priority-sorted queue require O(log(n)) [Str00].

5In the given system, task scheduling is only used together with task signals. If there are other transition triggers
like continuous signals or non-task signals, task scheduling would also spend some time in transition selection.
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• output is the proportion of workload of transition executions that is spent in signal outputs.

• timer set comprises the time to manage SDL timers and is also included in transition exe-
cution.

• The total workload represents the entire time the CPU is occupied. Note that this also
includes times that are not part of the delays above. Thus, total cannot be considered as
summation of the other workload types.

Regarding agent selection, the workload with task scheduling and signal-based FCFS is higher
than with agent-based FCFS and priority scheduling. The reason for this is the early selec-
tion of transitions, which costs time and is postponed to transition selection with both agent-
based schedulers. Consequently, loads for transition selections are higher for both agent-based
schedulers (about 2.5%) but 0% for both signal-based schedulers. The time spent for transi-
tion executions are more similar and have the main impact on the overall load. The cause
of Prioritiesagents and Prioritiestasks small increase are more expensive signal outputs, since
priority-sorted queues cause more overhead than FIFO queues. In particular, workload due
to signal outputs is 2.7% with task scheduling and 2.4% with priority scheduling, whereas it
is about 2% with FCFSagents and FCFSsignals. Regarding timers, the workloads are similar and
very low, because there are only few activations of SDL timers in the system.

In total, task scheduling is the second most expensive strategy and occupies the CPU for
15.8%. Only (process) priority scheduling utilizes the CPU more (16.1%). Note that with pri-
ority scheduling, each SdlAgent must check after each transition execution, whether it has still
the highest priority among all executable SdlAgents and that these times are included in total
only. Thus, priority scheduling generates the highest total workload, though other workload
types let one to assume differently. With the given system stimulus, the most efficient schedul-
ing strategy is signal-based FCFS, which generates a total workload of 14.1%. This may seem
surprising at first glance as agent-based FCFS is introduced as an optimization of signal-based
FCFS, but is explainable by the low system utilization. In particular, input ports of agents are
rarely occupied by more than one signal, thereby making the optimizations of the agent-based
FCFS strategy useless. In summary, the overhead of task scheduling is 1.7% higher than the
most efficient strategy, which is the price for improvements w.r.t. amount and jitter of delays.
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10.4 Performance Evaluation of SDL Real-time Tasks – The In-
verted Pendulum

In this section, evaluation series are presented, which have been conducted with FERAL and
HiL simulations (see Sect. 9.6). The composed scenario is from the control engineering domain
and a popular example of a control loop. In its focus is an inverted pendulum, which consists of
a rod with a mass and has a pivot point mounted on a cart. Target of the system is to balance the
rod of the pendulum vertically with its mass pointing upwards and to preclude it from toppling
by moving the cart horizontally. In the previous project “DFG-Schwerpunktprogramm 1305”,
this scenario has been realized by a distributed system, in which sensor, controller, and actuator
nodes communicate wirelessly and via a service-oriented middleware [Krä13b]. This section
now presents the incorporation of SDL real-time tasks into an SDL specification of this existing
solution and evaluates differences in communication delays and control quality between task
scheduling and other state-of-the-practice scheduling strategies.

10.4.1 Evaluation Setup

While the objective of the original project was the control of a real hardware pendulum, the fol-
lowing paragraphs present a simulative approach, where the inverted pendulum is simulated
by Matlab Simulink [Kam13].6 Similar to the real hardware pendulum, the simulated model
provides sensor values in terms of speed/position of the cart, and the rod’s angular deflection
and velocity. Furthermore, it offers an interface to adjust the cart’s movement by an actuator.

The complete simulated network topology is illustrated in Fig. 10.10 and comprises – in addi-
tion to the FSC of the inverted pendulum – SDL FSCs for a sensor, actuator, and controller node.
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Figure 10.10: Simulated network topology of the inverted pendulum scenario.

6The model has been kindly provided by the working group Automatisierungstechnik (http://www.eit.uni-kl.
de/atplus/).

http://www.eit.uni-kl.de/atplus/
http://www.eit.uni-kl.de/atplus/
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Furthermore, it includes a CSC with ns-3, simulating CC 2420-based wireless communication
among SDL FSCs. FSCs of sensor and actuator node are connected to the FSC of the pendulum
directly and realized with FERAL’s library-based SDL integration (see Sect. 9.6.1). Thus, they
are simulated without consideration of hardware execution times. The focus of the evaluation
is on the controller, which hosts a PID controller, whose input is received from the sensor node
and whose output is sent to the actuator via the ns-3 CSC. The controller is realized with both
SDL integration variants of FERAL: With the library-based integration to perform pure func-
tional evaluations of the considered SDL system (Sect. 10.4.2.1), and with FERAL’s support of
HiL simulations to conduct performance evaluations on an Imote 2 platform (Sect. 10.4.2.2). In
both evaluation series, all FSCs are simulated with FERAL’s time-triggered execution semantics
and time slices of 10 µs.

To ensure reliable communication, all messages among controller, sensor, and actuator are
sent in pre-configured time slots. The concrete slot configuration is shown in Fig. 10.11 and
starts with a synchronization slot, in which beacons are sent by the controller. Synchronization
slot as well as subsequent transmission slots have an identical duration and are placed equidis-
tantly, such that each node owns one slot every 30 ms.7 They are used both for management
data of the middleware like service announcements and alive messages, and for sensor and
control values, which are generated in intervals of 60 ms.

...

990ms

S C A S C S C ...S

10ms

C

synch slot  (transmission of beacon)

transmission slot of sensor nodeS

transmission slot of controller nodeC

transmission slot of actuator nodeA

A

Figure 10.11: Slot configuration of the inverted pendulum scenario.

The communication system realizing this scenario has been introduced under the name Net-
worked Control System - Communication Middleware (NCS-CoM) [Krä13b]. Its SDL specification is
presented in Fig. 10.12 by a simplified excerpt and has been extended with information about
SDL real-time tasks. Though some minor flaws in the specification were fixed in the course
of the evaluations – e.g., regarding reliability and accuracy of the beacon-based synchroniza-
tion –, changes primarily retain the original behavior. Blocks Middleware and MAC are identical
on all nodes; node-specific functionality is only specified in block Application, where – de-
pending on the concrete node – either sensor values are read, control values calculated, or the
(simulated) engine triggered. Block Load is newly introduced to allow an assessment of the
system’s behavior under load. For block MAC, two example SDL transitions are presented to
demonstrate the annotation-based incorporation of SDL real-time tasks. The right-hand transi-
tion illustrates the queueing of new transmission orders, where task attributes of the consumed
signal are stored and transmission orders are sorted by task signal priorities. If the consumed
signal is no task signal, the transmission order is appended to the queue.8 On the left-hand
side, the processing of the queue during reserved time slots is presented, where a frame is sent
via the simulated CC 2420 interface and continues the previous task by an explicit task forking.

7The only exception is the actuator node, which has lower communication demands and cedes one of its slots
to the controller for synchronization purpose.

8This is also true if the transition is executed by a scheduler different from task scheduling.
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Figure 10.12: Excerpt of the SDL specification of the controller node (based on [Krä13b]).

SDL block priority

MAC 0
Middleware 1
Application 2
Load 5
environment 0

Table 10.3: Block priorities.

Based on the existing SDL specification, types of SDL real-
time tasks are identified as shown in Table 10.4. Since task
signals of the same task always have the same priority, the ta-
ble includes one priority value only, which is assigned to all
task signals of the particular task type. With the exception
of tasks of type LOAD, all tasks are distributed involving all
SDL FSCs. In this regard, task attributes are communicated
implicitly by the (virtual) driver of the CC 2420 transceiver
by appending/retrieving them to/from outgoing/incoming
CC 2420 frames. In addition to task scheduling (Prioritiestasks), the SDL system is executed
with agent-based FCFS (FCFSagents) and process priority scheduling (Prioritiesagents) to enable
comparative assessments. For Prioritiesagents, priorities are assigned as defined by Table 10.3,
where processes inherit the priority of the comprising block.
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task type description priority

MACFCT MAC layer-specific functionality, including transmis-
sion/reception of synchronization beacons and processing
of reserved transmission slots.

1

CONTROL Adjusting the engine with a new control value; including:
(1) reading of new sensor values at sensor node
(2) calculating new control value at controller node
(3) driving engine with new control value at actuator node.

2

MIDMGT Processing of the middleware’s management traffic (sub-
scriptions, announcements, . . . ).

3

LOAD Execution of background load. 5

Table 10.4: Types of SDL real-time tasks in the inverted pendulum scenario.

10.4.2 Evaluation Results

The evaluation of this scenario focuses on the controller node and is split into two series: First,
differences of the schedulers are compared on design level in Sect. 10.4.2.1. For this purpose,
the controller is simulated by a library-based FSC, thereby not taking transition execution times
into account. Afterwards, comparative performance evaluations are presented in Sect. 10.4.2.2
with the controller running on HiL. The pendulum’s initial state is in both cases identical and
given by a standing cart, (yet) without toppling movement of the rod, and an initial angular
deflection of 4◦, where 0◦ corresponds to vertically upwards. Since the focus is not on the
network’s initialization but on the behavior of the network’s steady state, delays to discover
and subscribe services are not considered but accrue before the actual measurements start.
Starting from this state, the system is simulated for eight seconds.

10.4.2.1 Differences on Design Level

In the following, we begin with delays of tasks of type CONTROL, i.e., how long does it take
until a new sensor value influences the movement of the cart. We refer to these delays as
control loop delays (dcontrolLoop), which are – together with the fixed control interval of 60 ms –
crucial w.r.t. quality of control. Though execution times of transitions are not considered here,
schedulers may still differ in the order of transition executions. This, in turn, can influence the
order of frame transmissions, thereby having an effect on communication delays and dcontrolLoop.

In Fig. 10.13(a), dcontrolLoop is plotted by histograms for all three considered scheduling strate-
gies. For Prioritiestasks, delays accumulate at 31.2 ms and indicate that both sensor node and
controller send their sensor/control values in their respectively next reserved transmission
slot. With Prioritiesagents, the most frequent control loop delay is also 31.2 ms. With a fre-
quency of 6%, however, delays are 61.2 ms; and even 91.2 ms with 1% frequency. Similar results
can be observed with FCFSagents, since frame transmission orders are identical to the order of
Prioritiesagents. The impact of the differing control loop delays on control quality is illustrated
in Fig. 10.13(b), where the rod’s angular deflection is plotted over simulation time. Though all
schedulers prevent the rod from toppling, general as well as worst-case deflections are larger
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Figure 10.13: Comparison between scheduling strategies on design level without consideration
of transition execution times.

with FCFSagents / Prioritiesagents. This temporal extract is indeed inadequate as formal proof
for an (in)sufficient control quality, but demonstrates that already few outliers of dcontrolLoop of
about 7% have a serious impact on the rod’s stability and should therefore be avoided.

Actually, the presented differences are not caused by differing transition execution orders
but by an unequal queuing order of transmissions, where FCFSagents and Prioritiesagents may
prefer (less important) management traffic over sensor/control values. Though an optimized
transmission order could also be achieved with these two schedulers by introducing an explicit
priority model for transmissions, the utilization of task signal priorities demonstrates the capa-
bilities of SDL real-time tasks to multiplex heterogeneous data flows with implicitly available
information about the urgency of a signal. Thus, SDL real-time tasks cope with one priority
model on both design and implementation level.
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10.4.2.2 Performance Evaluations of the Controller Node

While execution times were neglected in the last subsection, they are now taken into account
by executing the controller on HiL. Though the controller’s FSC is generated differently and
has to be installed on an Imote 2 now, the system’s SDL specification remains unchanged. With
the controller running on HiL, synchronization offset between controller and sensor/actuator
deteriorates in general. But since the focus of the evaluation is on the transmission of sensor/-
control values, this deterioration is actually undesired and would impede the interpretation of
the results. Therefore, we still aim for perfect synchronization, which is achieved by sending
beacons with real-time signaling [KBCG11] and by executing sensor and actuator node still as
library-based FSC.

The results of the simulations are presented in Fig. 10.14 and introduce an additional schedul-
ing strategy that is denoted by Prioritiestasks_susp. This strategy corresponds to task scheduling
but additionally suspends SDL real-time tasks of priority ≥ 2 during time-critical sections of
the MAC layer; e.g., before frame transmissions in reserved time slots. Results of control loop
delays (Fig. 10.14(a)) show that for all strategies, the delays significantly increase with an in-
crement of about 30 ms. This indicates that the hardware is not fast enough to receive sen-
sor values, to calculate a new control value, and to enqueue the corresponding transmission
order within one slot duration and in time before the start of the next transmission slot of
the controller. Though these results do not reveal much further information regarding differ-
ences between schedulers compared to the previous results, they point out the importance of
evaluations on the target platform to assess the impact of execution delays on control quality
(Fig. 10.14(b)). In this regard, HiL simulations state an acceptable trade-off w.r.t. effort.

At first glance, a possible measure to decrease control loop delays with task scheduling is
the swap of priorities of tasks of type CONTROL and MACFCT. However, this would decrease
the controller’s compliance with transmission slots, since the transition consuming SDL timer
reservedSlotT (see Fig. 10.12) would be delayed until the new control value is available in the
transmission queue of the MAC process. Because this would endanger the entire communica-
tion system, this “optimization” must not be applied. A better solution to reduce the delays
is the selection of a communication schedule, which takes the controller’s processing delays
into account. In this regard, a possible schedule could be achieved by placing the actuator’s
communication slot in between the slots of sensor node and controller.

To evaluate the system’s behavior under load, further simulation runs are performed with
random background load of about 300 transition executions per second. This load accrues in the
separate SDL block Load (see Fig. 10.12) and does not share transitions of other tasks, thereby
being very convenient for process priority scheduling.

Corresponding results are presented in Fig. 10.15 by histograms over dcontrolLoop. Though
the histograms’ general shapes are almost identical to Fig. 10.14(a), exact values (mean, max,
etc.) are slightly larger. To investigate this issue in more detail, the controller’s conformance
with transmission slots is evaluated and plotted in Fig. 10.16. The figure presents the empirical
cumulative distribution function of dslotDeviation, which is the time difference between the con-
troller’s actual transmission start and the nominal start of its reserved communication slot. For
most transmissions, the deviation is larger with task scheduling than with the other scheduling
strategies. However, task scheduling achieves both with and without load the lowest maxi-
mal slot deviation. Furthermore, the difference between best and worst observed deviation is
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Figure 10.14: Performance comparison with HiL simulations.
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Figure 10.15: Histograms over control loop delays with additional system load.

smaller with task scheduling (1.29 ms→ 1.50 ms w/o load; 1.28 ms→ 1.60 ms with load). This,
particularly, holds when applied with suspension, where dslotDeviation turns out to be (almost)
insusceptible to load (1.32 ms→ 1.47 ms w/o load; 1.30 ms→ 1.48 ms with load). In sum, task
scheduling does not emerge as most efficient strategy here but as most predictable one.

To review the property of predictability in more detail, statistical analyses are applied to de-
rive probabilistic worst-case delays, which, in turn, allow a more reliable comparison between
the different scheduling strategies. The adopted statistical methodology has been introduced
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Figure 10.16: Empirically determined deviation of actual transmission times from nominal start
of reserved communication slots.
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by Edgar and Burns in [EB01] and is based on extreme value theory. Its outcome are estimates
of worst-case slot deviations9 with associated levels of confidence. In more detail, the method-
ology is adopted as follows: First, a statistical model of slot deviations, which is based on a
Gumbel distribution [Gum58], is derived from the empirical data. In the context of this evalua-
tion, one such model is created for each scheduling strategy. Based on these models, pertaining
excess distribution functions are built, where the respective maximum of the sample data is
used as threshold of the distribution function. This function associates a level of confidence to
worst-case estimates of slot deviations and enables comparisons between scheduling strategies
w.r.t. to a desired confidence level.

In Fig. 10.17(a), the Gumbel distributions are plotted, which are derived from the outcome
of the simulation runs and serve as models of slot deviations. Their parameters in terms of
location (µ) and scale (σ) are given in the figure. Derived pertaining excess distributions are
illustrated in Fig.10.17(b). They demonstrate that, with the same confidence level, estimates
for worst-case slot deviations are significantly lower with task scheduling – and, in particular,
with suspension – than with the other scheduling strategies. As examples, concrete values
are presented for a confidence of 0.99 numerically: For task scheduling with suspension, this
estimate is 1.615 ms, i.e., the probability that the actual possible worst-case deviation is larger
than 1.615 ms is only 1%. Process priority scheduling provides the same confidence for an
estimate of 2.242 ms, which is more than 600 µs larger.

In sum, the results of the statistical analyses confirm the intuition of the empirical data. On
the one hand, they show that task scheduling is less efficient, i.e., slot deviations are on average
lower with other state-of-the practice scheduling strategies. However, on the other hand, worst-
case deviations with task scheduling are significantly lower; both in the empirical results of the
simulations as well as in the probabilistic models. In this regard, the low variations in the
deviations enable lower and more accurate worst-case estimates.
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Figure 10.17: Statistical analyses of slot deviations.

9The original methodology is applied to execution times, which are equal to slot deviations in this context.
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10.5 Discussion

This chapter has several contributions: First, it provides a proof-of-concept that SDL real-time
tasks are not only a theoretical concept but are implementable and have practical benefits. Sec-
ond, it demonstrates that task scheduling can – compared to other state-of-the-practice schedul-
ing algorithms – reduce worst-case delays of time-critical tasks significantly. And finally, it
provides evidence that costs of task scheduling are indeed larger but acceptable.

By performance evaluations, it is shown that SDL real-time tasks enable a powerful and
model-based control of the system’s execution at runtime. Because real-time tasks are orthogo-
nal to the static system structure, task scheduling is more flexible than existing scheduling algo-
rithms for SDL implementations and outperforms, in particular, (process) priority scheduling,
which is often advocated as adequate prioritization measure. Though SDL process priorities
are seen as default prioritizing scheme for SDL systems, they suffer if the same transitions are
shared by several system tasks with different urgencies. For instance, in the ACC scenario,
maximal reaction delays with task scheduling are only 40% of the worst-case delays with pri-
ority scheduling. Furthermore, task scheduling generates less jitter and is less prone to load
than other scheduling strategies, thereby being more predictable and allowing the determina-
tion of tighter upper bounds. In the ACC scenario, the jitter of sensor delays is 370 µs with task
scheduling, whereas priority scheduling produces 1300 µs of jitter.

However, task scheduling does not come for free but is associated with some extra costs. Yet,
compared to advantages w.r.t. amount and variability of delays, overhead of task scheduling
remains acceptable. In the ACC scenario, for instance, its overhead is approximately 10%-15%
higher than the overhead of the most efficient scheduler of SdlRE. Since the overhead of task
scheduling was slightly lower than the overhead of process priority scheduling, its efficiency
is even put into a better perspective. Nevertheless, concrete values must be seen with great
caution, because they are very implementation- and scenario-specific and not universal.

Similar results were observed in the scenario of the inverted pendulum. Though here, task
scheduling reveals that it is not the fastest strategy on average and that delays are often smaller
with state-of-the-practice solutions, it also demonstrates that it is most predictable and achieves
the smallest worst-case delays. For instance, the variability of empirically observed slot devia-
tions in the controller’s system under load is with task scheduling 320 µs, whereas process pri-
ority scheduling varies in a range of 950 µs. In this regard, further improvements are achieved
by task suspensions, which reduce the variability to 180 µs. By means of probabilistic models,
it was furthermore confirmed that estimates for worst-case delays are significantly lower with
task scheduling.

Though task suspension seems to be a kludge against the lack of full preemption in the first
instance, it is actually stronger than preemption, since preemption reaches its limits when tran-
sitions share the same agent. In this case, preempting a running low priority transition is not
possible due to SDL’s run-to-completion semantics, but suspension, on the contrary, can avoid
the execution of the transition a priori.



11. CHAPTER

Related Work: SDL Implementations,
Extensions, and Analysis Techniques

SDL looks back to a very long history. Hence, the following survey of state-of-the-practice
implementations, language extensions, and analysis techniques is not complete but targets at a
broad overview. For this, not only previous works with similar objectives as SDL real-time tasks
are considered but also orthogonal and complementary proposals, which can be combined
with SDL real-time tasks gainfully. Though this section provides a broad overview, it clearly
concentrates on SDL as engineering language for (embedded) real-time systems and excludes
works, in which SDL is used for simulation and visualization purpose.

In [Int12c], the SDL standard advocates the language as follows:

“The main area of application for SDL is the specification of the behavior of aspects of real-time
systems, and the design of such systems.”

And indeed, SDL has many properties that are advantageous for real-time systems [BGK+00]
like asynchronous communication and a tight incorporation of time. However, it is also often
stated (e.g., in [EGG+01]) that there are limitations, which prevent SDL from being a full real-
time-capable design language and restrict application scenarios of SDL implementations. A
main drawback is often seen in SDL’s scheduling nondeterminism, which is addressed by many
related works by incorporating priorities into SDL or by applying system analyses with the
assumption of a priority-based execution model.

This chapter summarizes these works and other proposals that target improvements of SDL’s
expressiveness and applicability for embedded real-time systems. It is structured as follows:
In Sect. 11.1, state-of-the-practice SDL implementation approaches and alternatives are out-
lined. Thereafter, Sect. 11.2 introduces analysis techniques and language extensions of SDL to
improve its runtime predictability. Section 11.3 then presents previous approaches to derive
SDL specifications from scenario descriptions with MSCs, which can be adopted to identify
and illustrate task types of a system. Finally, Sect. 11.4 relates the presented proposals to SDL
real-time tasks.

11.1 SDL Implementations

Model-driven development processes with automatically derived implementations have sev-
eral advantages like consistency between specification and implementation, increase of produc-
tivity, and quality improvements [KLK00]. However, it is a common opinion that implementa-
tions automatically derived from models are slow, inefficient, and require much more memory
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than manual implementations [MCR97]. Thus, it is often concluded that automatically gener-
ated implementations are not suitable for time-critical systems as found in wireless networks
[LL05]. As a consequence, SDL is often used as design language for prototype implementations
and analyses or validations but not for final products. To remedy this gap in the engineering
process, an impressive number of measures to improve the performance and to configure the
generation of implementations – like the mapping of SDL processes to OS tasks – can be found
in SDL tools as well as academic proposals. In the following, an outline of these approaches is
provided.

11.1.1 General Aspects of Implementing SDL

There are several text books about the efficient implementation and realization alternatives of
SDL. In the following, a survey of two comprehensive works is given [BH93, MT00].

In [BH93], Rolv Bræk and Øystein Haugen discuss the implementation of SDL-92 [Int93].
A large part of the book is about trade-offs between hardware and software implementations.
Regarding hardware design, guidelines are provided to distribute an SDL system among phys-
ical units and to dimension these units appropriately. Referring to this, the gap between SDL
systems and real systems is highlighted; including investigation of processing time, errors, and
capacity of resources. The software design covers implementations of data types, communi-
cation, concurrency, and SDL signals, and compares several alternatives. Concerning signal
transfer, an efficient way is the realization by function invocation, thereby removing SDL’s
asynchronous communication model and dissolving the distinction between communication
and scheduling (see also Sect. 11.1.3). For an efficient implementation, Bræk and Haugen pro-
pose the omission of hard-to-implement language constructs like SDL’s save. In addition, they
suggest the introduction of signal and process priorities at implementation level to meet real-
time constraints, and the suspension of signals from the environment during overload situ-
ation. Finally, example C++ implementations of several SDL constructs are shown. In this
context, properties of SDL are opposed to properties of modern programming languages, e.g.,
regarding built-in support of concurrency, time, and communication.

Mitschele-Thiel addresses in [MT00] the implementation of SDL-2000 [Int99a] with the focus
on efficiency and performance. The book also outlines differences between SDL and real-world
implementations; particularly limitations of queues, processes, and communication. Regarding
the interfacing of SDL with OSs, three strategies are compared: Tight integration (extensive
usage of OS services w.r.t. scheduling and signal transfer), light integration (less interaction
with OS and more functionality in SDL engine), and bare integration (no underlying OS but
all functionalities provided by SDL engine). Further presented realization alternatives cover
data types, input queues, buffer management, timers, transition activation, and state machines.
Additionally, efficiency improvements on the basis of design guidelines and the limitation of
SDL constructs are considered. In this regard, loosening of SDL’s copy-by-value semantics is
presented as a measure to reduce overhead of signal transfer. Furthermore, Mitschele-Thiel
presents alternatives to deal with scarce resources and to handle queue overflows.

Besides text books, there are also some papers about efficiency of SDL implementations. In
[San00], Sanders discusses alternatives to deal with the mismatch between “SDL’s ideal world”
and the real world. The presented discussion includes, for instance, limitations of queues, data
types, and resources, and the mapping of SDL’s concurrent execution model to a serialized ex-
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ecution. To implement SDL efficiently, he suggests to avoid the copying of signal parameters
if possible and to realize signal outputs as method calls instead of buffered signal transfers.
Mapping signal outputs to method calls equals the activity thread approach (see Sect. 11.1.3)
and is only applicable if signal transfer is not circular. If this precondition is not fulfilled, a
buffered transfer must be used. In this case, an implementation must, however, consider lim-
ited queue sizes and buffer overflows, e.g., by temporarily suspending sending SDL processes.
In Sander’s opinion, dissolving SDL’s concurrent execution semantics is outside the scope of an
SDL specification. Thus, he refers to additional tools like the deployment editor of IBM’s Ratio-
nal SDL Suite [IBMar, LEH00], which enables the grouping of SDL processes into (concurrent)
OS processes with different priorities. Regarding flexibility in implementations, he suggests
configurable code generators – like COCOS [LK99, KLK00] or the RASTA toolkit [MCR97] – to
provide optimization parameters (e.g., speed vs. memory usage).

11.1.2 State-of-the-Practice – Commercial SDL Tools

There are currently three vendors offering tool suites with strong SDL support: IBM (Ratio-
nal SDL Suite [IBMar]), PragmaDev (Real-time Developer Studio [Praar]), and Cinderella ApS
(Cinderella [Cinar, RKL05]). Since Cinderella is only available for Windows and was last up-
dated more than ten years ago, the following survey considers only IBM’s SDL Suite and Prag-
maDev’s Real-time Developer Studio (RTDS).

IBM’s SDL Suite [IBMar] – originally developed by Telelogic – provides various SDL-96,
MSC, and ASN.1 tools, and allows a tight collaboration with UML [LEH00]. It supports sev-
eral target OSs (e.g., Linux, Windows, and various RTOSs like VxWorks1 and QNX 2) and bare
metal implementations. Besides a heavy-weighted C code generator called Cadvanced/Cbasic,
SDL Suite includes with Cmicro a C code generator that is specialized for embedded systems
with real-time characteristics. Cmicro enables the (optional) assignment of priorities to SDL
processes and signal types, which are directly specified in SDL diagrams by a novel #PRIO di-
rective. If process priorities are defined, a preemptive scheduling strategy can be used and
scheduling decisions are based on a signal queue for each process priority level that is option-
ally sorted by signal priorities. Code generated by Cmicro favors static memory allocation and
does not include code for SDL blocks or signal routes, i.e., according to SDL’s semantics [Int00],
only SdlAgents are explicitly created and scheduled during runtime. Many optimizations are
only possible by omitting support for complex SDL constructs. This includes procedures with
states, enabling conditions, continuous signals, inheritance, and SDL services3.

RTDS [Praar] is currently the most lively SDL tool suite and runs on Windows and Linux. It
provides a graphical SDL editor, simulator, debugger, and code generators for both C and C++.
Supported target OSs comprehend Windows, Linux, and various RTOSs (VxWorks, FreeRTOS4,
Nucleus5, . . . ). With the default mapping strategy, each SDL process becomes a single RTOS
task in the implementation (called threaded execution), but RTDS also supports grouping of
several SDL processes into one RTOS task (called scheduled execution). In this case, scheduling

1http://www.windriver.com/products/vxworks/
2http://www.qnx.com/
3SDL services have been superseded by composite states in SDL-2000 [Int99a].
4http://www.freertos.org/
5http://www.mentor.com/embedded-software/nucleus/

http://www.windriver.com/products/vxworks/
http://www.qnx.com/
http://www.freertos.org/
http://www.mentor.com/embedded-software/nucleus/
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within an RTOS task can be performed by a built-in scheduler executing transitions in a signal-
based FIFO order. By grouping the entire SDL system into one task, bare implementations are
possible. The concrete mapping of SDL processes into tasks is defined via UML deployment
diagrams.

Besides SDL, RTDS has also support for SDL-RT (SDL Real-Time [SDL13]), an SDL dialect
with the objective to harmonize SDL and RTOS implementations. SDL-RT is currently pub-
lished in version 2.3 and can basically be described as alignment of naming conventions (e.g.,
“signal” is renamed to “message”) and the embedding of C into SDL. This includes the in-
corporation of C data type declarations instead of SDL data types6, global variables, pointers,
and semaphores, which come with a distinct graphical syntax. Parameters of messages can
be passed on by reference. In addition, SDL-RT supports combinations of SDL diagrams with
UML class diagrams, where classes can either be static (usual C++ classes for data types) or
dynamic (becoming active SdlAgents in the implementation). SDL-RT also allows the specifica-
tion of SDL process priorities, which are mapped to priorities of RTOS tasks. Besides language
extensions, SDL-RT comes also with some restrictions. This affects, for instance, enabling con-
ditions and priority inputs, which are not part of SDL-RT.

11.1.3 SDL Execution with Activity Threads

An efficient way of implementing SDL signal transfer is by using the activity thread approach
[LK99, KLK00]. In this approach, a procedure is provided for each signal input and signal
transfers are implemented with procedure calls, i.e., the output of a signal executes the con-
suming transition immediately. Though this synchronous execution model, in which signals
and not processes are seen as active entities, produces much less overhead than a model with
signal queues, it differs from SDL’s asynchronous execution model significantly. As result, sev-
eral semantic conflicts can arise depending on the concrete system structure. These conflicts
include, for instance, interference of transition executions of the same process and overtaking
of signals. To resolve them and to enforce the run-to-completion semantics of SDL transitions,
[LK99, KLK00] propose a technique called transition reordering, which has been implemented
in a tool called COnfigurable COmpiler for SDL (COCOS). Transition reordering is applied at
compile time and postpones signal outputs after the transition has reached its successor state.
In some cases, it changes additionally the signal output order to enforce a desired transition
execution order. Though transition reordering resolves many semantical conflicts, it cannot be
applied in all cases, e.g., if signal outputs occur in loops, where the number of iterations is
unknown at compile time. Additionally, the activity thread approach is not compatible with
SDL’s save or if a circular signal output sequence exists, in which the same transition should
be executed multiple times. To overcome these problems, the authors suggest a combined im-
plementation, using the activity thread model where possible and a server model providing
asynchronous buffered signal transfer in all other cases.

6This was also be planned for SDL-2010 [Int12c] but was not completed at the time of the standard’s approval
(see also Sect. 7.1).
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11.1.4 Directing SDL Code Generators by Annotations

To improve SDL implementations for industrial products, [MCR97] presents extensions of SDL
that are classified as fine- or coarse-grained annotations. Fine-grained annotations (called Tar-
get Language Extensions (TLEs)) are written directly in the SDL specification and support the
seamless integration of manually written code into code that is automatically generated from
the specification. Examples of TLEs are variable declarations and decisions in implementa-
tion language, thereby also supporting data types of the target language and global variables.
Coarse-grained annotations are specified in a separate annotation file and guide the code gen-
erator regarding structural aspects. Here, examples are the mapping of SDL blocks to OS tasks
and the configuration of signals to be implemented as procedure calls.

11.1.5 Implementing SDL on TinyOS

In [DRDK04], Dietterle et al. use the light-weight open source OS TinyOS7 as foundation for
SDL implementations and present an approach to map an SDL system to a set of TinyOS com-
ponents. In TinyOS, all components run concurrently in the same address space and are con-
trolled by a FIFO scheduler by default. In the presented mapping strategy, each SDL process
becomes one TinyOS component, which implements the state machine of the process. Cur-
rent state and local variables are stored in the frame of the component. A signal queue is
additionally introduced in each component to realize SDL’s save. For optimization purpose,
several measures like replacing SDL’s asynchronous communication with synchronous proce-
dures and using copy-by-reference data types are discussed. Though the mapping is mostly
straight-forward, several limitations exist, since TinyOS does, for instance, not support dy-
namic component/process creations. Furthermore, it should be considered that TinyOS is no
RTOS, thereby limiting its applicability in time-critical systems.

11.1.6 Implementing SDL on RTOSs

Drosos et al. present the realization of an interface to run SDL systems, which are generated
with IBM’s Rational SDL Suite and Cadvanced [IBMar], on the Virtuoso RTOS [DZM01]. Since
the SDL Suite does not come with support for Virtuoso, a new intermediate layer has been
developed. This layer provides hardware drivers and interrupt routines, and includes an SDL
environment agent, which maps SDL signals to low level function calls and generates SDL sig-
nals during interrupt handling. The authors follow a tight integration approach, in which each
SDL process is mapped to one RTOS task with a single signal queue. In addition, a timer OS
task is generated to handle SDL timers. Scheduling is completely performed by the scheduler
of Virtuoso, which supports preemptive and priority-based strategies. A proof-of-concept is
given with the DECT protocol on an ARM microcontroller.

A further example of integrating SDL into an RTOS is with the Reflex RTOS [WDEK06].
Starting point of this integration is also Cadvanced of IBM’s Rational SDL Suite [IBMar]. The
SDL runtime environment is basically realized by the OS and a thin OS integration layer. The
integration approach is also tight, i.e., each SDL process becomes a so-called schedulable activity

7http://www.tinyos.net/

http://www.tinyos.net/
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of Reflex. Non-schedulable activities of Reflex are used for interrupt routines. By default, ac-
tivities with higher priority can interrupt other activities and scheduling is performed with an
EDF strategy. Communication among processes is via event channels, where a target SDL pro-
cess must be addressed by its name, thereby reducing flexibility and making dynamic process
instances impossible. To realize SDL timers, a global timer queue is introduced. Expired timers
are removed from this queue after periodical ticks, which are announced by interrupts. Thus,
granularity of SDL timers is limited to the periodicity of ticks. The SDL environment is also
realized by a Reflex activity, which is addressed by identifier xEnv. Because signals generated
by the environment must also be addressed to the receiving SDL process by name, the environ-
ment activity must either be specific for each SDL system or processes in the SDL system must
follow a fixed naming convention.

11.1.7 Handling Scarce Hardware Resources

Implementations for embedded systems require a well-planned utilization of hardware re-
sources. In the following, two approaches are summarized, which address memory and energy
consumption, respectively, for SDL implementations.

The work in [GGK07] is motivated by scarce memory resources of embedded systems. In
SDL, a main reason of memory overload is the semantics of input ports, which may store any
number of signals. Since this is non-realistic in implementations, the authors present extensions
of SDL’s syntax and semantics to specify bounds on SDL input ports. Here, a distinction is
made between the specification of explicit and implicit input port bounds, where explicit bounds
are specified at input ports directly and implicit bounds are associated with incoming signals.
The authors prefer implicit bounds and allow their specification globally (at signal type def-
initions) or locally (at signals in channels or gates). To deal with input port overflow, three
strategies are compared: Discard (delete new signal), replace (replace first signal of same type
in input port with new signal), and delete/append (delete first signal of same type in input port
and append new signal at the end). Since the last strategy is compliant with SDL’s semantics
regarding signal ordering, it is the preferred solution. In addition, the delete/append strategy is
also the desired behavior in many systems and, in particular, in Networked Control Systems
(NCS). To be compatible with the used SDL editor and code generator Cmicro [IBMar], the
extensions have been implemented by annotations.

Not memory constraints but energy resources are addressed in [GKLC09] by energy-aware
system designs with SDL. The paper presents two complementary approaches to reduce en-
ergy consumption at design time that are called energy mode signaling and energy scheduling. A
precondition for both approaches is the existence of a detailed energy model, in which energy
modes, energy consumptions per mode, and transition delays are provided for each hardware
component.

• The energy model is explicitly exploited by energy mode signaling, where hardware mode
transitions are specified in SDL and signaled by SDL procedures or SDL signals to the
environment. To distinguish between SDL signals describing the regular behavior and
signals triggering transitions between energy modes, naming conventions are introduced.
An advantage of energy mode signaling is that scenario knowledge can be utilized, e.g.,
to realize duty cycling of the transceiver.
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• Energy scheduling is an implicit approach, which uses system state information to switch
between energy modes. Compared to energy mode signaling, it has the advantage that
information of the system’s runtime environment – like the contents of signal queues or
the next timer expiration time – is available.

Both approaches require extensions of the SVM and environment implementation. They are
illustrated with an inverted pendulum system using the Imote2 [MEMara] platform.

11.1.8 Hardware/Software Co-Design

A common approach to meet tight timing constraints is the implementation of time-critical
functionality in hardware. Due to the concurrent runtime model of SDL, the language is in-
deed well suited for hardware implementations, which provide a much higher degree of con-
currency. As result, several proposals have been submitted covering the usage of SDL for com-
bined hardware/software co-designs.

[SDM01] presents an approach that is based on a fine-grained partitioning of SDL processes
into the control flow of state machines and the data operations. To obtain software implemen-
tations, C code is generated for selected parts of the system. For hardware implementations,
parts of the SDL system are translated into a Very High speed integrated circuit hardware Descrip-
tion Language (VHDL) representation and deployed to Field Programmable Gate Arrays (FPGAs).
The approach enables a flexible assignment of parts of an SDL process to hardware and soft-
ware. Thus, it is, for instance, possible to implement some transitions in hardware and the
remaining transitions and the state machine in software.

In [LL05], an SDL profiling tool called profSDL is presented. Its objective is to find potential
bottlenecks of the system and to suggest SDL processes which should better be implemented
manually or in hardware. For this, the tool provides a static and a dynamic analysis of an
SDL specification. The static analysis counts the number of particular SDL constructs that are
used in each SDL process. The dynamic analysis evaluates the computational effort by sim-
ulating the SDL system and counting the number of executions of particular SDL statements.
By measuring concrete execution times of single SDL statements on different target platforms,
the counted number of executions can be weighted to obtain a more accurate impression of the
computational effort. A further output of profSDL is the overhead of the SVM implementa-
tion in terms of inter-process communications. Thus, the tool can also suggest to merge SDL
processes in order to reduce communication overhead.
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11.2 Predictability and Expressiveness of SDL

The missing capabilities of SDL to express execution precedence and temporal constraints has
led to several language extensions, which address SDL’s expressiveness w.r.t time and schedul-
ing nondeterminism. While the objective of most of these extensions is the analytical assess-
ment of a system’s temporal behavior and non-functional properties, there are also some pro-
posals that target the applicability of SDL as real-time engineering language. Though the objec-
tives of these proposals are completely different, they all want to make SDL implementations
more predictable and its runtime behavior more transparent. Therefore, many extensions are
related to each other, yet their methodology differs significantly. The following subsections
provide a survey of this broad field of related work.

11.2.1 Analysis Based on Markov Chains

Timed SDL (TSDL, [BB90, BB93]) describes extensions of SDL to assess qualitative (e.g., absence
of deadlocks) and quantitative (e.g., throughput) system properties. The presented extensions
mainly target the evaluation of protocols and can be grouped into two categories: First, there
are extensions to mark SDL transitions with probabilities and execution delays. Second, exten-
sions exist to inspect the state of an SDL process and its input port. The proposed approach is
based on the mapping of system specifications with TSDL into a more general representation
with extended finite state machines. On these state machines, analysis techniques from the area
of Markov chains are applied. In this regard, the authors present three analysis algorithms that
differ in the way of dealing with state space explosion [BB90]: Non-exhaustive state space ex-
ploration, non-exhaustive performance analysis, and probabilistic validation and performance
evaluation. All algorithms are implemented in a tool chain and use the system specification
with TSDL as input. Additionally, a control file has to be provided to limit the length of sig-
nal queues and to mark SDL states, for which performance results should be computed. W.r.t.
qualitative evaluation, the output of the analysis distinguishes between errors (e.g., deadlocks),
which disallow further performance analyses, and warnings (e.g., implicit consumptions).

11.2.2 Simulation-based Analysis

Queueing SDL (QSDL, [DHMC95, DHMC97]) is an extensive graphical extension of SDL-92
[Int93] for performance evaluation of SDL systems. The concept of QSDL is based on queueing
models [Jai91], whereas evaluation results are obtained by discrete simulations. Using QSDL,
an SDL specification is extended with so-called machines providing services, properties of load,
and the mapping of load to machines. Machines of QSDL look very similar to SDL processes
and can be placed in similar places of the specification. They are connected to SDL processes by
pipes and some kind of link (similar to SDL channels and SDL links). Type, amount, and pri-
ority of load are specified within SDL transitions, either at SDL task statements [DHMC95] or
at newly introduced request constructs [DHMC97]. To simulate random load, QSDL provides
data types for several probability distributions. QSDL machines are configured with the num-
ber of servers and the provided service types. Furthermore, scheduling strategies and speed
of servers can be defined. The presented approach is implemented in a tool called QUEST,
which transforms extended SDL specifications into executable simulation models. The output
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of the simulation includes both functional behavior (visualized by MSCs) and performance
data (signal wait times, machine utilization, . . . ). A drawback of QSDL/QUEST is the neglect
of overhead of the runtime environment, e.g., to select a transition or to transfer a signal.

11.2.3 Scheduling SDL with Message Deadlines

In [KF98], Kolloch and Färber present schedulability analyses of SDL systems that are based
on the determination of WCETs of transitions by profiling on the target platform, the specifica-
tion of non-functional properties – in particular, deadlines and worst-case intervals of external
events – in Performance Message Sequence Charts (PMSCs, [FLMTS97]), and the mapping of the
SDL specification to an analyzable task network. Together with properties of the target plat-
form, the resulting documents constitute the Real-Time Analysis Model (RTAM), which is the
input of schedulability analyses with a preemptive EDF strategy. Since task networks are less
expressive than SDL specifications, the mapping underlies many restrictions like no dynamic
process creations, no priority inputs, and no save of input signals. The generated task network
consists of several independent task systems. Each system is built by consecutively travers-
ing all SDL transitions that are executed to answer one external system event. Therefore, task
systems may share transitions of the same SDL process. As a consequence, task systems have
regions with mutual exclusion, since transitions of the same SDL process cannot be preempted.

The work has also become a part of Kolloch’s dissertation [Kol02], in which scheduling with
signal deadlines (called Message-based EDF – MEDF) is incorporated into SDL. The overall ob-
jective of his work is the improvement of SDL’s predictability and analyzability for reactive real-
time systems, in which responses to system stimuli must be created in time. This is achieved
by limiting the scheduling nondeterminism of SDL implementations, yet to the detriment of
language features (e.g., SDL’s save and delaying channels are forbidden).

MEDF scheduling is applied to process both external events (signals from the environment)
and internal events (SDL timers). In both cases, an absolute message deadline (a so-called dead-
line token) is attached to the signal, which is passed on to outgoing signals during transition
executions. Input ports of processes are ordered by these message deadlines and transitions are
executed accordingly. Besides describing the impact of MEDF scheduling on SDL’s semantics,
Kolloch also introduces annotations for the specification of timing constraints such as computa-
tion times. Together with further non-functional properties like frequency and dependency of
events, the timing constraints build the foundation for system analyses with MEDF scheduling
and automatically derived task networks (see above).

MEDF has been implemented with IBM’s Rational SDL Suite [IBMar] on the light-weighted
RTOS Real-Time Executive for Multiprocessor Systems (RTEMS8). During code generation, two
alternative strategies have to be balanced: The Server Model generating one RTOS task for each
SDL process and the Activity Thread Model grouping all transitions that belong to one event
stream into a single RTOS task. The RTEMS scheduler has been extended to execute RTOS
tasks w.r.t. signal deadlines and to apply deadline ceiling and deadline inheritance protocols.

8http://www.rtems.org/

http://www.rtems.org/
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11.2.4 Analysis of SDL Specifications with Timed Automata

In [BFG+99, BGM01a], Bozga et al. present an approach to interconnect various tool suites
in order to evaluate SDL specifications with existing analyzers, validation tools, and model
checkers. The resulting integration tool is named IF environment, because it is based on an rep-
resentation called Intermediate Format (IF). SDL specifications are generated with ObjectGEODE,
which is no longer available on market and was originally developed by VERILOG.9 Starting
from the abstract syntax tree provided by ObjectGEODE, the transpiler SDL2IF translates SDL
into IF. Though most of the translation steps are straight-forward, some language constructs of
SDL like dynamic process instantiation are not supported. The IF specification of the system
is, unlike the hierarchical structure of the SDL specification, flat and consists of a set of timed
automata. They asynchronously communicate via buffers, which can – different from SDL – be
configured to be lossy and/or bounded and to apply different queuing policies. The semantics
is based on a labeled transition system, where transitions can additionally be attributed with
different urgencies: eager, delayable, or lazy. Thereby, the designer can control whether time may
progress infinitely (lazy – default behavior in SDL implementations), restrictedly (delayable), or
not at all (eager – default in SDL simulators) in situations with firable transitions. To cope with
state explosion, the authors present countermeasures, which are realized with the IF2IF com-
piler and based on static analysis.

In [BGK+00, BGM+01b, Gra02], the same authors encourage a broader discussion on SDL’s
deficiencies w.r.t. missing programming and modeling constructs. Regarding implementation,
they propose several extensions like the introduction of cyclic and interruptive timers, and
an operator to access timer values. In addition, they suggest language support for atomicity
and mutual exclusion, which is argued to be required in real-time systems. To achieve this,
standardized SDL packages providing an interface to semaphores and similar synchronization
mechanisms are considered [BGM+01b]. On the specification side, the authors criticize the
weak time semantics of SDL and missing support to express assumptions on system properties.
To mitigate these shortcomings, they present a set of annotations and propose the introduction
of local clocks [Gra02], which are deduced from SDL’s now with a maximal offset and drift.
Furthermore, they introduce a new time semantics based on timed automata with three types
of urgencies: lazy, delayable, and eager (see above). They are realized by annotations that are
associated with signal inputs and continuous signals. Further annotations are connected to
SDL channels to attribute communication delays, loss probabilities, and signal order. Since the
authors do not believe in a single SDL semantics fulfilling all requirements from system analysis
over code generation to test case definitions, they recommend the introduction of semantical
profiles [BGK+00]. An overview of the extensions and annotations, and their application in the
Reliable Multicast Transfer Protocol 2 case study can be found in [PVB03].

A detailed description of mapping SDL specifications to timed automata with urgencies is
available in [OK01]. The overall objective of this work is the definition and verification of
temporal properties of an SDL system. Examples of such properties are invariances, the absence
of deadlocks, and non-zenoness, i.e., the absence of runs without time progress. Though the last
property first describes a theoretical problem and no implementation issue, it is actually also

9In 1999, VERILOG has been acquired by Telelogic AB (http://feed.ne.cision.com/Commands/File.
aspx?id=45103), which has, in turn, been acquired by IBM in 2008 (http://www-03.ibm.com/press/us/en/
pressrelease/23792.wss). Thus, parts of ObjectGEODE can be found in IBM’s Rational SDL Suite [IBMar].

http://feed.ne.cision.com/Commands/File.aspx?id=45103
http://feed.ne.cision.com/Commands/File.aspx?id=45103
http://www-03.ibm.com/press/us/en/pressrelease/23792.wss
http://www-03.ibm.com/press/us/en/pressrelease/23792.wss
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a problem on implementation level, because it indicates a system with permanent overload.
Properties are defined with the property specification language GOAL (Geode Observation
Automata Language), which is automata-based and has an SDL-like syntax. The verification
step is performed with an extended variant of the ObjectGEODE tool. Since most problems
and properties that are tackled by the authors are undecidable with full SDL, restrictions of
language constructs, variable ranges, signal queue lengths, and the usage of SDL time are made.

11.2.5 Improving SDL’s Expressiveness with Native SDL

To enrich SDL specifications with temporal constraints, [ABS01] presents a set of SDL exten-
sions, which are actually no extensions of SDL’s syntax but use available language constructs
and naming conventions. The presented approach brings temporal knowledge about the imple-
mentation into SDL specifications and relies on typed signals and a standardized architecture of
embedded real-time systems. In the center of the architecture is an application that has to pro-
duce answers to system stimuli from the environment within given deadlines. It is additionally
triggered by a periodic clock signal to perform recurrent calculations. The typed signals follow
a special naming scheme and have pre-defined parameters to specify timing constraints. Ex-
amples are interrupt signals that are augmented by the minimal intervals between subsequent
interrupts and deadlines. Because the presented extensions have not been implemented, they
only improve the expressiveness of specifications without affecting final implementations.

Motivated by the weak definition of time progress in SDL, [AKLN99] presents a new inter-
pretation of SDL’s time model. The proposed model does actually not violate the standard, but
limits time progress by totally controlling SDL’s now. The model defines time progress only in
between timed events, which are either SDL timers, signals with enabled conditions, or con-
tinuous signals. Executions of transitions do not require any time. If a continuous signal or an
enabling condition contains a time interval, the transition is executed at a point in time, which
is randomly taken from the interval (comparable with delayable transitions in Sect. 11.2.4). Due
to this random behavior, the execution is still nondeterministic. All timing constraints are spec-
ified with native SDL. They can only be enforced in simulations and cannot be guaranteed in
implementations.

11.2.6 SDL* – Extensions for SDL Time

[MSDH01] addresses the problem that SDL’s time model is inappropriate to express timing
constraints. It is, particularly, criticized that SDL time has no unit and that SDL’s definition
of time progress is too general. To solve this issue, the authors propose the usage of physical
clock models in SDL, which are introduced by an abstract data type Clock and corresponding
operators to access clock values and to set timers. Physical properties of clocks are specified
with the annotation-based extension SDL*. Thus, designers can add several clocks with differ-
ent physical properties in an SDL specification. The authors additionally add a new abstract
data type Eventclass to monitor events, to validate timing constraints, or to run performance
evaluations. By providing a flexible interface to this abstract data type, complex dependencies
between events can be evaluated. Though the presented approach reduces the gap between
SDL’s time model and physical clocks, it does not improve the efficiency or predictability of
implementations.
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11.2.7 Transition Priorities and Rate Monotonic Analysis

In [ÁDL+00, ÁDL+01, ÁDL+03], Álvarez et al. present a priority-based execution model of
SDL for reactive systems. The presented scheduling strategy is based on fixed transition pri-
orities, which are defined as annotations and connected to input symbols of SDL transitions.
Transition priorities are used to derive the dynamic priority of a process, which is defined as
the highest priority of all currently firable transitions of the process. The proposed scheduling
strategy is fully preemptive, i.e., a firable transition can interrupt the execution of a transition
with lower priority as long as both transitions are not in the same SDL process. The changed
execution model is used as foundation for a single-core Rate-Monotonic Analysis (RMA). In-
puts of the RMA are the WCET of each transition, periodicity of events, deadlines of expected
responses, and the extended SDL specification. The response time of an event is defined as the
execution time of all transition executions that are involved in processing the event plus inter-
ference time (time to execute transitions with higher priority) and blocking time (time to wait
until a transition execution of the same process with lower priority terminates). If the RMA
reveals violations of deadlines, the authors suggest the application of redesign rules such as
replication of SDL transitions and the movement of transitions to newly created processes.

In [ÁDL+03], language extensions in terms of two pre-defined functions – time_sent and
time_received – are presented to improve the transparency of time progress during signal
transfer. They return the signal creation time (time_sent) and the time of signal consumption
(time_received). To deal with hardware interrupts and to control system load, [ÁDL+03] fur-
thermore presents a way to integrate hardware drivers into SDL specifications. For each driver,
two processes are introduced: A passive process providing access to the hardware and transitions
that are directly executed after hardware interrupts, and an active process bridging between the
passive process and the rest of the SDL system. By assigning appropriate transition priorities,
the priority of hardware components can be specified.

The implementation of the priority-based execution model is called Sched_SDL [ÁDL+01]. It
maps SDL transitions to POSIX threads and provides a scheduler to enforce the priority-based
transition execution order. Though the authors state that their approach is compliant with
SDL’s semantics [ÁDL+03], it actually supports only a subset of SDL and includes violations
of the semantics like the removal of implicit consumptions. It is also unclear how language
constructs like enabling conditions are compatible with the priority-based transition selection.
This even holds when comparing the proposed transition priorities with SDL-2010 [Int12c],
where due to the introduction of multiple input priority levels less semantics violations exist.

The approach of Álvarez et al. is adopted by Diaz et al. to allow the utilization of RT-CORBA
(Real Time-Common Object Request Broker Architecture, [Gro05]) from within SDL specifi-
cations [DGLT09]. The general objective behind CORBA is enabling method invocations on
remote objects and to hide the required communication from the caller. For this purpose, client
stubs and server skeletons are used to serialize method parameters and return values, and to
abstract from communication. A drawback of standard CORBA is the missing upper delay
bound on method invocations, which is improved by RT-CORBA by introducing a priority
model that supports both server- and client-defined priorities. To enable the use of RT-CORBA
in SDL, [DGLT09] presents a set of SDL design patterns, which introduce caller (client) as well
as callee (server) in the specification. If the developer selects server-defined priorities, the pri-
ority model of Álvarez et al. [ÁDL+00, ÁDL+01, ÁDL+03] is applied.
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11.2.8 Real-time Signaling – A Generalization of SDL Timers

In [KBCG11], Krämer et al. present SDL extensions to introduce the concept of remote timers.
The extension is called real-time signaling and enables the association of two additional times-
tamps with ordinary SDL signals to specify time intervals, in which SDL signals should be re-
ceived. The first timestamp is the arrival time that postpones signal delivery until the specified
point in time. The second timestamp is the expiry time, which allows the removal of “outdated”
signals in situations with high load. In addition to real-time signaling, the authors present an
anonymous variable called sendtime to access the point in time when an SDL signal was cre-
ated (similar to time_sent in Sect. 11.2.7). The extensions are illustrated in an implementation
with a centralized scheduler, which activates tasks in a time-triggered way. Compared to so-
lutions with standard SDL, the SDL design with real-time signaling produces less overhead
and improves timeliness significantly. Real-time signaling has been incorporated into SDL by
extending SDL’s concrete syntax and semantics, and implemented in a tool chain consisting
of SdlRE [Fli09] and SEnF [FGJ+05]. The idea behind real-time signaling has been adopted in
SDL-2010 [Int12c] in terms of activation delays, yet with a different syntax.

11.2.9 Hierarchical Scheduling Strategies for SDL

To close the gap between the behavior of SDL systems in simulations and implementations,
Boutet et al. present an approach to integrate scheduling policies on design level [BCRL00]. In
a first step, SDL processes of the specification are mapped to nodes, which represent concur-
rent execution entities. In an implementation, a node can, for instance, also be an OS process.
Furthermore, SDL signals are grouped into internal and external events, where internal events
are signals between SDL processes of the same node, and external events are signals traversing
several nodes (including signals from/to the environment) and SDL timer signals, respectively.
Within a node, internal as well as external events are processed with FIFO order. Internal
events, however, have always privilege over external events, thereby creating a transition ex-
ecution order that is different from the SDL semantics. To define a precedence among nodes,
each node is attributed with a priority. As result, SDL’s scheduling nondeterminsm is replaced
by a less concurrent execution model and a priority-based scheduling policy, thereby making
system analysis and validations by simulations more implementation-related. The presented
approach has been implemented in the ObjectGEODE simulator, in which a GOAL observer
implements the proposed inter- and intra-node scheduling policies.

11.2.10 Further Model-based Analysis Techniques for SDL

Model checking with SDL as input language has a long tradition and combines the strength of
two worlds: On the one hand, SDL with its formal semantics and its foundation of finite state
machines, and, on the other hand, the sophisticated functionalities of established verification
tools. Different from the simulation of a scenario, model checking is based on state space explo-
ration. Thus, it generally explores a larger state space than simulations. Since model checking
with SDL uses the SDL specification as input, it can, however, not guarantee correctness of the
system due to possible errors in implementations or wrong assumptions.
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In [RB98], Regensburger and Barnard from Siemens present a model checking tool suite
called System Verification Environment (SVE). It is based on binary decision diagrams (BDDs)
and targets the verification of protocol properties of mobile communication systems. The in-
put of SVE is a set of SDL processes, which are specified with ObjectGEODE and translated
into general finite state machines. Since the translation process is severely limited regarding
support of SDL constructs and data types, designers of the SDL systems must follow rigid
guidelines. Properties to verify and assumptions about relevant system runs are specified in
the SDL Property Language (SPL) and translated into temporal logic. The behavior of the envi-
ronment is modeled by pseudo SDL processes. To keep the state space smaller, a deterministic,
single-core, and non-preemptive scheduling strategy with process priorities is applied.

The usage of SDL for post-mortem model checking of distributed systems is presented by
Hallal et al. in [HPUB01]. Their approach starts with execution traces, which are recorded dur-
ing test runs of the system and contain send, receive, and local events. The traces are mapped
to signal outputs, inputs, and SDL task statements, respectively. The resulting system consists
of one SDL block, where for each entity of the distributed system, one SDL process is included.
The events of one system entity are reflected by a total order inside the corresponding SDL pro-
cess, where SDL’s save is used to guarantee the correct order of signal inputs. Consequently,
the generated SDL system may have very few similarities with the original system. Properties
to validate are specified in GOAL and checked by GOAL observers during exhaustive sim-
ulation runs with ObjectGEODE. A drawback of post-mortem model checking is the limited
validity of results, because a system can still be faulty, though the model checking process does
not reveal any error. Thus, choosing the right execution traces is crucial.

In [BDHS00, SS01], a model checking approach for SDL systems is proposed with DTSpin,
a discrete-time extension of the Spin (Simple Promela INterpreter10) model checker. The in-
put is an SDL specification, which is first transformed into IF with the SDL2IF tool (see also
[BFG+99, BGM01a]). After reducing the state space by applying static analysis techniques,
relevant parts of the model are further transformed into a representation with DTPromela (Dis-
crete Time Process Meta Language), which is the input language of DTSpin and an extension
of Promela with a new data type for timers. Different from Spin, DTSpin executes the system
with time slices, where time proceeds only if the system cannot perform an action (cf. eager in
Sect. 11.2.4). Besides explicitly modeling the environment to turn the system from an open to
a closed system [BDHS00], automatic code transformations can be applied to introduce spon-
taneous transitions emulating signals from the environment [SS01]. To verify only subparts of
an SDL system, similar steps are performed. Transitions are assumed to be atomic and instan-
taneous. To deal with large and complex systems, concepts from safe abstraction are integrated
besides the measures provided by Spin natively [SS01]. The presented approach is demon-
strated in a case study with a wireless ATM MAC protocol called Mascara.

Model checking based on the translation of SDL into high-level Petri nets is presented by
Aalto et al. in [AHV03]. The transformation step is done automatically by a tool called SDL2PN,
which generates a single Petri net transition for each SDL statement (like SDL input, task state-
ment, . . . ). For each variable, Petri net places are introduced, storing tokens with the current
value of the variable. The input queue of a process is also carried by a token that is stored in a
special place. For this, the authors present a queue data type and operators to access elements

10http://spinroot.com/spin/whatispin.html

http://spinroot.com/spin/whatispin.html
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of the queue. An additional Petri net place is also created for each SDL process to store the
current program counter. The generated Petri net model is used as input for Maria11, a model
checking tool with an elaborated type system and with support for reachability analyses of
large systems.

11.3 System Design with SDL and MSCs

Though Message Sequence Chart (MSC) is an own language standardized by ITU-T [Int11], it
is often used in combination with SDL to specify system requirements or to illustrate particular
use cases. Thus, most SDL tools support MSC as well. W.r.t. SDL real-time tasks, MSCs can,
for instance, be used to identify task types of a system. This section outlines design techniques
that automatically build SDL specifications by means of MSCs.

In [DGLS99], Dulz et al. present an automatic transformation of MSCs to SDL specifications
to enable early performance estimations. The approach is motivated by the fact that the struc-
ture of a system — i.e., the distribution of functionality across blocks and processes — has an
influence on the overall performance. To guide the transformation from MSCs to SDL, the au-
thors propose an architecture specification language. In order to enable accurate performance
evaluations, the designers additionally have to provide annotations in the MSCs. This includes
the specification of CPU times and the amount of signal payload. The generated SDL specifi-
cations are synthetic and for evaluation purpose only, i.e., they are not intended for later reuse.
They are automatically transformed into prototype implementations with the same tool chain
that is later used for the final implementation. The implementations are executed on the target
platform and monitored. The required system stimulus is generated by an artificial environ-
ment, enabling a black box evaluation of the system.

To guarantee consistency between design documents, [KV00] describes a method to auto-
matically enrich existing SDL specifications with behavior specified in MSCs. A main objective
of the approach is the extension of SDL process specifications without violating existing behav-
ior. Starting with an existing SDL specification and the new behavior in MSCs, the enrichment
process consists of two steps: First, the architecture is completed by adding new SDL processes
and channels. Because the decision on the concrete placement of new structural elements can-
not be made automatically, this step requires manual effort by the designers. In the second
step, the behavior in the MSC — in particular, signal inputs and outputs — is automatically
integrated into the extended SDL specification by a tool called MSC2SDL.

Enhancements of the MSC to SDL translation and details of the MSC2SDL tool are presented
in [KZ05]. Different from the prior work, two additional MSC language features are supported
now: High-level MSCs (HMSCs), which are available since MSC-96 [Int96b] and enable the
composition of MSCs, and time constraints, which are introduced in MSC-2000 [Int99c] and
are translated into continuous signals or enabling conditions. Though the MSC2SDL tool still
requires the target architecture as input, it can now check the consistency between the given set
of MSCs and the architecture, and can notify the designer if a mismatch is detected. Further-
more, the tool can automatically examine the implementability of the MSCs, because they may
rely on global knowledge that is not available in an SDL system.

11http://www.tcs.hut.fi/Software/maria/index.en.html

http://www.tcs.hut.fi/Software/maria/index.en.html
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11.4 Discussion

Though there is much related work on SDL, there are only few works concerning more pre-
dictable implementations. Instead, most works found in literature are about efficiency im-
provements of code generators, realization of time-critical parts in hardware, and system anal-
yses. Whereas efficient software and hardware realizations have their focus on performance,
analyses approaches have in common that they indeed assume a priority-based execution of
the system, which is mostly based on process priorities, but do not describe how to enforce it in
the implementation. In total, there are only very few proposals like Kolloch’s MEDF schedul-
ing [Kol02] that actually control transition execution orders in SDL implementations by SDL
extensions on design level.

Many outlined proposals regarding efficient code generation – like activity threads [LK99,
KLK00] – do not consider predictability of SDL implementations but performance improve-
ment. To schedule SDL systems with priorities, it is often suggested to map an SDL system
to processes of an RTOS and to apply a priority-based scheduler of the OS [Praar, IBMar].
Thereby, OS services like multi-thread support and preemption can be utilized, and a wide
range of hardware is supported. Though a mapping of SDL systems to OS tasks is provided by
many tools, they usually do not support all features of SDL. In particular, the usage of dynamic
SDL process creation is often prohibited. In addition, scheduling decisions are very limited
with such tight OS integrations, because priorities of RTOS processes can only be derived from
the structure of the SDL system. Though the implementation of SDL real-time tasks does not
provide the same extensive functionality like an OS, it does, on the contrary, not suffer from
these limitations. SDL real-time tasks particularly allow dynamic process creation and enable
the execution of a transition with the priority of the task it fulfills and not based on the tran-
sition’s placement in the specification. If deadlines are violated, it is also state-of-the-practice
to outsource parts of the system to hardware or hand-written code [LL05, SDM01]. Although
this step is unavoidable in some cases due to efficiency reasons, it does not increase the trans-
parency of the execution of an SDL system and is not consistent with holistic model-driven
development processes (see also Sect. 7.2 about SDL-MDD).

Approaches for system analyses, verification, and model checking rely on the transformation
of SDL specifications with diverse extensions to different representations and the application
of approved methods and tools. To make this possible, such approaches often restrict the set
of supported language elements. The methods can be classified according to their degree of re-
alism: On the one hand, there are analyses methods to verify qualitative properties, where the
designer decides on time progress. Here, an example is the specification of transition urgen-
cies (eager, delayable, lazy) and the transformation into timed automata [BFG+99, BGM01a].
While such approaches are useful for the verification of the design, they are hardly relevant for
implementations. On the other hand, there are approaches like QSDL [DHMC95, DHMC97]
and TSDL [BB90, BB93], which are more related to implementations by considering hardware
limitations. However, these approaches are also for analyses only and do not affect the behav-
ior of SDL systems during runtime, i.e., they assume a particular system behavior but do not
describe how to enforce it in an implementation. A further drawback of almost all presented
analysis approaches is the neglect of SVM overhead.
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Besides taking advantage of OS process priorities, some commercials tools like IBM’s SDL
Suite [IBMar] also provide built-in extensions for SDL process or signal type priorities. How-
ever, such prioritization measures are very limited, because priorities are statically assigned in
the SDL specification. More sophisticated approaches are fixed transition priorities of Álvarez
et al. [ÁDL+00, ÁDL+01, ÁDL+03] and MEDF scheduling of Kolloch [Kol02]. Similar to built-
in priorities of tools, fixed transition priorities rely on structural elements only, thereby being
less powerful and flexible than SDL real-time tasks. Additionally, it can be assumed that SDL
real-time tasks produce less overhead, because priorities have not to be re-calculated after each
transition execution as it is required by the execution model of Álvarez et al.. MEDF schedul-
ing has most similarities with SDL real-time tasks but has only been applied to process and
privilege local events. Distributed tasks are not considered and it is not obvious how to extend
MEDF scheduling for this purpose. From a schedulability perspective, EDF-based priorities are
superior to fixed priorities as transported by task signals of SDL real-time tasks.12 This comes,
however, to the detriment of larger overhead.

Most of the related works are no competitors of SDL real-time tasks, but are orthogonal
and can be combined gainfully. A well-suited example is real-time signaling [KBCG11], which
makes time-triggered task executions more flexible. By adopting energy-aware system design
[GKLC09] and input port bounds [GGK07], the applicability of SDL real-time tasks in embed-
ded systems could also be improved. A further example is SDL with RT-CORBA [DGLT09],
where the two priority models of RT-CORBA (client- vs. server-defined) are currently real-
ized differently in SDL. By incorporating SDL real-time tasks, a homogeneous integration of
both models could be achieved. Since SDL real-time tasks realize a particular system task, it is
also possible and beneficial to specify SDL real-time tasks in MSCs and to apply MSC to SDL
transformations [KV00, KZ05]. Up to now, SDL real-time tasks have been semantically inte-
grated into SDL, prototypically implemented, and evaluated by experiments, but there are no
explicit schedulability tests or analyses available for systems with SDL real-time tasks. How-
ever, some of the outlined analysis techniques are good candidates to be adopted; for instance,
RMA [ÁDL+03] or analyses with task networks [KF98]. Yet, if such methods are applied, gains
must be traded off against inherent limitations w.r.t. supported language elements. Further-
more, additional overhead of the SVM implementation should be considered as well.

12Note that task signal priorities can also be derived from time-dependent expressions; e.g., by computing pri-
orities based on SDL’s now.





12. CHAPTER

Conclusions and Future Work
Depending on the concrete scenario of a networked system, communication primitives have
not only to enable data exchange, but must additionally guarantee a desired degree of QoS.
This particularly holds for distributed real-time systems, which place two key requirements on
the communication system and its development: First, the behavior of the protocols must be
deterministic, i.e., their delays and outcome must be predictable if the configuration is known.
Second, implementations must comply with timing constraints that are required by the proto-
cols in order to retain their determinism. This thesis is concerned with both requirements: The
first part proposes a novel binary countdown protocol for wireless multi-hop networks, provid-
ing deterministic value-based medium arbitration and data transfer with bounded delays. The
second part presents extensions of SDL to improve the language’s applicability to distributed
real-time systems and time-critical protocols. The following sections discuss the results of both
parts, open questions, and future work.

12.1 Conclusions and Contributions

Part I of this thesis is concerned with ACTP, a decentralized binary countdown protocol for
wireless multi-hop networks. As an instance of a binary countdown protocol, ACTP resolves
contest among nodes dynamically, deterministically, value-based, and with constant delay. Fur-
thermore, it is robust against node movements and does not rely on topological information
like the neighborhood of nodes. Though ACTP is not the first representative of this protocol
class, it outperforms previous ones w.r.t. flexibility and configurability and is, particularly, the
first one with configurable and even network-wide application range. Different from previous
binary countdown protocols, it explicitly comes with a cooperative operation mode, enabling
the collision-protected transfer of bit sequences.

The key foundation of ACTP is its collision resistance, which is achieved by the incorporation
of black bursts and treated in Chapter 2. In the course of this thesis, a generalization of black
bursts is presented to enable the encoding of larger symbols. In addition, optimization mea-
sures are proposed to enhance their robustness. In this regard, the focus is on the widely-used
IEEE 802.15.4-compliant [Ins11] CC 2420 transceiver [Tex07] and its CCA mechanism, which is
crucial w.r.t. the detection of black bursts. Though this transceiver is not optimal concerning
the efficiency of black burst implementations, it is sufficient as proof-of-concept. Furthermore,
it offers configuration options to optimize the duration of black bursts, which are realized as ir-
regular MAC frames with a duration of 160 µs, and their robustness, which could be increased
by transmitting unique synchronization words.
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Besides introducing ACTP’s mode of operation, bit timing, and realizations in terms of an
SDL specification and two manual implementations, Chapter 3 discusses possible limitations
and threats in the application of ACTP. On the one hand, they are protocol-inherent and affect
restricted applications of ACTP, where the multi-hop competing problem limits the meaning of
the outcome of an ACTP run and does not produce the maximal possible number of winners.
Yet, also with these limitations, restricted applications of ACTP guarantee that a winner is the
only winner within arbitration radius. On the other hand, they are caused externally and arise
if the single-network property is violated. In this case, external interference may cause false
positives or false negatives, and can lead to wrong winners and the reception of corrupted
bit sequences. In general, the validity of the single-network property is essential, yet some
limitations – like asymmetrical links – are acceptable as discussed in Sect. 3.6.

Due to small data rates, ACTP is no all-purpose protocol and no replacement of estab-
lished communication schemes like TDMA, which is, for instance, best suited if communi-
cation demands are strictly periodical. Nevertheless, ACTP provides attractive solutions to a
wide range of problems of distributed (real-time) systems that are currently only insufficiently
solved by available protocols. Examples are presented in Chapter 4 and comprise general
problems like leader election and negative acknowledgments as well as control system-specific
topics like Try-Once-Discard (TOD). In the context of TOD, ACTP disproves previous papers
[TNT07, NL09], which wrongly conclude that TOD’s wired solution, which is based on CAN
[Int04], cannot be transferred to wireless systems. An important precondition of ACTP that
is discussed in the course of its applications is synchronization, which is required to subdi-
vide time into bit rounds and to start ACTP runs synchronously. In this regard, an integrated
yet ACTP-independent solution is presented, which is based on the internal synchronization
protocol BBS and the establishment of super slots, in which runs of ACTP are placed in vir-
tual slot regions relative to synchronization phases. Different from existing binary countdown
protocols, this approach offers configuration options to find an acceptable trade-off between
overhead, synchronization offset, and duty cycling.

In experiments with the CC 2420 transceiver, it is shown that ACTP is actually implemen-
table and that success rates of >99.9% are achievable even with customary hardware and vio-
lations of the single-network property. Corresponding results are presented in Chapter 5. By
investigating the impact of overlapping black burst transmissions, it is furthermore shown that
multiple black bursts interfere additively without indication of mutual extermination. In fur-
ther experiments, proposed optimizations w.r.t. the detection of black bursts are validated and
demonstrate that the average detection accuracy can be improved significantly by observing
the gradient of the RSSI register. Thereby, black burst detection becomes less dependent from
signal strengths and the CCA threshold of the transceiver.

In Part II, this thesis proposes the incorporation of real-time tasks, which are an established
concept in the design of real-time systems [Kop97], into SDL. The rationales behind these steps
have their origins in the mismatch between SDL’s conceptual perfect world, where all SDL
processes run in parallel, and the real-world, where transition executions have to be serial-
ized. With SDL real-time tasks, the necessary serialization steps become better controllable and
are less nondeterministic than in existing SDL implementations. Since controlling SDL real-
time tasks should occur on design level within SDL specifications to maintain compliance with
model-driven development processes like SDL-MDD, language extensions became necessary,
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which are devised in terms of task actions, task signals, task attributes, and task operators in
Chapter 8, and are formally transferred into SDL’s syntax and semantics in Appendices B and
C. To take into account that SDL’s application domains are networked systems, distributed
real-time systems, and protocol engineering, a notion of distributed SDL real-time task has
been introduced, which enables the specification of node-spanning tasks.

The implementation of SDL real-time tasks is covered by Chapter 9. In this regard, an
annotation-based realization is presented, which is syntactically similar to the proposed SDL
syntax extensions and allows the re-utilization of existing SDL tools. These annotations are the
starting point for real-time task-aware implementations, which are automatically generated
from SDL specifications and executed by a novel scheduling strategy called task scheduling.
Since task scheduling works with implicitly available information of SDL real-time tasks, no
additional implementation phase is required, which is usually applied for conventional SDL
implementations to map SDL processes to processes of the target OS.

Different from existing priority-based SDL scheduling strategies, priorities of task scheduling
are not statically derived from structural elements of the specification but deduced from SDL
real-time tasks and dynamically associated with transition executions. As a consequence, the
priority model of task scheduling is orthogonal to the static system structure and, in particular,
not based on SDL process priorities, which are advocated as adequate prioritization measure
by industrial SDL tools, but significantly less flexible. By enabling executions of the same tran-
sition with different priorities, the priority model of task scheduling furthermore copes with
the fact that SDL processes are designed w.r.t. abstraction and reuse, and that, consequently,
the same transition may be executed by different system tasks and with unequal urgencies.
Task scheduling is devised as scheduling strategy with deferred preemption, i.e., a task can
preempt another task with the granularity of transition executions. By supporting task suspen-
sion, delays caused by long-running low priority transitions can be avoided entirely. This also
goes beyond the capabilities of existing scheduling solutions, which may indeed support full
preemption, but must not violate the run-to-completion semantics of SDL transitions.

Altogether, SDL real-time tasks and task scheduling address all three sources of transition ex-
ecution delays in an SDL system: Queueing delay by selecting transitions w.r.t. task signal pri-
orities, serialization delay by introducing a global queue of task signals, and run-to-completion
delay by enabling the suspension of tasks. Thereby, they outperform existing prioritization
measures of SDL and tool extensions, which only address at most two sources of delay.

In Chapter 10, evaluation results are presented that demonstrate the implementability and
practical benefits of real-time tasks in SDL. In particular, by two performance evaluations from
the domain of control systems, it has been shown that task scheduling, although being slightly
less efficient than conventional scheduling solutions, can reduce worst-case delays of critical
tasks significantly. For instance, in a scenario with an Adaptive Cruise Control, the worst-case
delay with task scheduling is only 40% of the delay that is achieved by a state-of-the-practice
SDL scheduler. In a second example with an inverted pendulum and hardware-in-the-loop
simulations, task scheduling could reduce the variability of execution times from 950 µs (pro-
cess priority scheduling) to 180 µs. In summary, these results show that SDL implementations
become substantially more predictable with SDL real-time tasks, which is the key requirement
towards the application of SDL in (distributed) real-time systems.
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12.2 Limitations, Open Issues, and Future Work

At the beginning of the work with ACTP, an objective was to develop the protocol in a model-
driven way with SDL and to automatically generate an Imote 2 implementation. In this regard,
the aim has not been achieved completely, since ACTP’s SDL specification is applicable in sim-
ulations only and both available Imote 2 implementations are hand-written. However, the main
reason of missing the aim is now no longer the unpredictability of SDL implementations, but
their reduced performance, which makes an SDL-based implementation unattractive. The ap-
plied and extended tool chain – consisting of ConTraST, SdlRE, and SEnF – has been devised
w.r.t. compliance with SDL’s formal semantics and not to provide highly efficient SDL imple-
mentations. Thus, an open issue is the realization of SDL real-time tasks with a more efficient
tool chain. Referring to this, a first step has been made in [BCGM14], where the industrial tool
chain of PragmaDev has been incorporated into BiPS. Since the software is proprietary, it is,
however, an open issue whether real-time tasks will actually be realized with this tool chain.

Regarding ACTP, further effort has to be paid to investigate violations of the single-network
property and to develop countermeasures. Concerning the second point, a possible approach
is redundancy increase, which can improve the protocol’s success rates, but is only sketched
in this thesis. Though ACTP is more susceptible to interference than ordinary transmission
techniques, the problem is not inherent to ACTP. In this regard, [PC11], for instance, reports
that the performance of WirelessHART [Int10] degrades with neighbored IEEE 802.11 networks
[Ins12a]. Thus, there should be a general interest to allocate channels carefully and to separate
best effort traffic from traffic with more stringent QoS constraints. A further conceivable im-
provement of ACTP is the incorporation of compression schemes. Thereby, arbitration delays
of critical messages could be decreased by encoding higher priorities with less bits. Since the
compression must comply with the mode of operation of binary countdown, finding an ad-
equate compression scheme is, however, not straightforward. Another point of future work
has been revealed by the evaluation results of Sect. 5.4 and affects the detection of black bursts
with offsets larger than the maximal delay of the CCA mechanism. To guarantee the correct
assignment of detected black bursts to bit rounds and to guarantee that the bounds of the syn-
chronization offset of BBS are not exceeded, these outliers have to be identified and filtered.

Concerning SDL real-time tasks, a limitation is the single-thread implementation of task
scheduling. Due to the increasing popularity of multi-core architectures, this limitation is no
longer contemporary; in particular, since the task-based structuring of the execution opens up
several opportunities, e.g., to assign a task to a dedicated core. Such steps implicate, however, a
large amount of effort, since the entire used SDL tool chain is currently not designed for multi-
thread executions. Though the presented SDL implementations are inappropriate for perfor-
mance demanding protocols like ACTP, their improved predictability allows their use for time-
critical higher-level functionality. In this regard, examples are control systems as demonstrated
in the evaluation chapter. To enable their utilization in (hard) real-time systems, schedulability
tests become necessary, which, in turn, require knowledge about platform-specific WCETs of
transitions and the SVM implementation. Since these delays are very hard to determine an-
alytically on modern hardware [But05], probabilistic WCETs may be an alternative and have
exemplarily been derived in Sect. 10.4. However, further work is required to extend this ap-
proach to sets of real-time tasks and schedulability tests.



A APPENDIX

The Imote 2 Platform
The Imote 2 platform is an embedded system for Wireless Sensor Networks (WSNs). In the
context of this thesis, it is used to provide evidence of the implementability of both ACTP and
SDL real-time tasks and to conduct performance evaluations. Section A.1 presents a general
survey of the hardware. Afterwards in Sect. A.2, its CC 2420 wireless transceiver is introduced
in detail due to its importance for black bursts and ACTP.

A.1 Overview

The Imote 2 sensor node [MEMara] was originally developed by Intel1 and last distributed
by MEMSIC2. It is no longer available on market, yet it is still one of the most sophisticated
wireless sensor nodes w.r.t. computational power and memory. In Fig. A.1, the node is shown
with and without an extending sensor board. The Imote 2 is equipped with an XScale PXA 271
processor, supporting clock frequencies ranging from 13 Mhz to 416 MHz. The XScale CPU is an
ARM3-based architecture and supports the ARM-v5TE instruction set. It has built-in memory
of 256 KB SRAM and 32 MB SDRAM and non-volatile memory of 32 MB flash.

The PXA 271 has numerous input/output connectors to stake further peripheral hardware.
This includes several General Purpose Input/Output (GPIO) pins, Universal Asynchronous

(a) Front (PXA 271 processor). (b) Back (CC 2420, antenna). (c) Imote 2 with sensor board.

Figure A.1: Imote 2 sensor node with and without additional sensor board.

1http://www.intel.de
2http://www.memsic.com/
3http://www.arm.com/

http://www.intel.de
http://www.memsic.com/
http://www.arm.com/
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Receivers/Transmitters (UARTs), and Serial Peripheral Interface (SPI) buses. One of the SPI
buses and several GPIO pins are used to interconnect the microprocessor and the CC 2420 wire-
less transceiver [Tex07].

A.2 The CC2420 Transceiver

The CC 2420 [Tex07] is an IEEE 802.15.4-compliant [Ins11] transceiver that is built and dis-
tributed by Texas Instruments. It operates on the 2.4 GHz Industrial, Scientific, and Medical
(ISM) band and supports in total 16 orthogonal channels in between 2405 MHz and 2480 MHz,
where each channel has a bandwidth of 2 MHz and a distance of 5 MHz to neighboring chan-
nels. Its data rate is 250 kbps and the maximal PHY payload 127 bytes. The output power of
the transceiver is programmable and supports 32 levels with a maximal transmission power
of 0 dBm. The receiver sensitivity of the CC 2420 is about -90 dBm, which is slightly better
than the sensitivity threshold of -85 dBm that is prescribed by the IEEE 802.15.4 standard. The
transceiver is typically used for transmission ranges of up to 30 m, whereas the actual trans-
mission range depends on the used antenna and environment. With external antennas and
line-of-sight, ranges of up to several hundred meters are possible [RCM+06].

An IEEE 802.15.4 standard-compliant transceiver must support turnaround times between
reception and transmission mode of at most 12 symbol periods (192 µs). The CC 2420 transcei-
ver meets this demand and provides even better values: According to its data sheet [Tex07], the
turnaround time from reception to transmission mode can be shortened to 8 symbol periods
(128 µs) by configuration. By means of experiments [Eng13], it could be shown that switching
from transmission to reception mode also requires 128 µs only and is thus in contradiction to
the data sheet.

The CC 2420 transceiver supports three CCA modes that are described in the IEEE 802.15.4
standard. They are discussed in more detail in Sect. 2.3.2. The maximal time to perform CCA is
prescribed by IEEE 802.15.4 with 8 symbol periods (128 µs). Two of the CCA modes utilize an
energy detector. This detector compares the 8 bit RSSI, which is averaged over 8 symbols and
determined with an accuracy of ±6 dB, against a threshold and reports on a busy medium if
this threshold is exceeded. The current CCA state is provided by the CC 2420 transceiver via
a special CCA output pin. On the Imote 2, this pin is connected to a GPIO pin of the PXA 271
processor. Thereby, implementations of black bursts and other protocols can use hardware
interrupts, which are triggered by changes of the CCA pin, to be informed about a medium
state change quickly.

To determine the quality of a link after receiving a frame, the CC 2420 transceiver provides
two metrics: First, the RSSI value, which has been measured over the first 8 symbols after the
SFD, is appended to the received frame. Second, Link Quality Indication (LQI) is supported,
which has – in accordance with IEEE 802.15.4 – a length of 8 bits with at least 8 unique values.
In general, the LQI can be implemented based on the RSSI, by a signal-to-noise ratio estimation,
or by a combination of both. In the CC 2420 transceiver, LQI can be calculated on the basis of
an averaged chip sequence correlation value, which is determined for the first 8 symbols after
the SFD and represents some kind of chip error rate.

The IEEE 802.15.4 standard defines several variants of physical layers, where the CC 2420
transceiver implements the Offset Quadrature Phase Shift Keying (O-QPSK) PHY. This physical
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Parameter Value Comment

sminFrame 5 bytes minimal size of a (irregular) frame, used by black bursts
r 250 kBit/s transmission rate
dswitchTx 128 µs switching time to send mode (data sheet)
d′switchTx 129 µs switching time to send mode (by experiments)
dswitchRx 192 µs switching time to receive mode (data sheet)
d′switchRx 128 µs switching time to receive mode (by experiments)
daccessRx 320 µs switching time to receive mode until CCA is valid (data sheet)
dmaxCCA 128 µs maximal delay until medium status change is detected
dpause 16 µs minimal pause between subsequent black bursts
erx 18.8 mA energy consumption in reception mode
etx,max 17.4 mA maximal energy consumption in transmission mode
eidle 0.4 mA energy consumption in idle mode

Table A.1: Summary of hardware characteristics of TI’s CC 2420 transceiver. Values from exper-
iments are taken from [Eng13, ECG14].

layer adopts Direct Sequence Spread Spectrum (DSSS), which maps 4 bits (= 1 symbol) to one of
16 nearly orthogonal chip sequences of length 32. Consequently, the symbol rate of the CC 2420
transceiver is 62.5 kSymbol/s and the chip rate 2000 kChip/s. The generated chip sequences
are then modulated onto the carrier with O-QPSK, where chips with an even index are sent
with the in-phase carrier and chips with an odd index with the quadrature-phase carrier. Since
each chip is shaped into a half-sine pulse before modulating it onto the carrier, the modulation
scheme of the CC 2420 is also called Minimum Shift Keying (MSK).

A summary of relevant hardware properties of the CC 2420 transceiver is provided by Ta-
ble A.1. Values from experiments have been determined during a student’s master thesis and
are published in [Eng13, ECG14].
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SDL Real-Time Tasks – Formal Syntax
This appendix summarizes extensions of SDL’s concrete syntax to incorporate SDL real-time
tasks formally. They are based on Basic SDL-2010 [Int12d].

To create task signals, the signal output and timer set statement of SDL have to be extended. In
particular, language constructs to specify task actions are required in order to control SDL real-
time tasks. Their syntactical incorporation is shown in the following listing, where existing
rules are colored in gray and new rules in black. New terminal symbols are written in bold.

1 <output body item > : : = [ < task act ion >] < s i g n a l i d e n t i f i e r > [ < a c t u a l
parameters >] [ < task parameters >] [ < a c t i v a t i o n delay >] [ < s i g n a l p r i o r i t y
>]

2 < s e t statement > : : = [ < task act ion >] s e t < s e t body> [ < task parameters >]
3

4 <task act ion > : : = newTask | contTask
5 <task parameters > : : = <new task parameters > | <cont task parameters >
6 <new task parameters > : : = [ < task type s p e c i f i c a t i o n >] [ < task s i g n a l

p r i o r i t y >]
7 <cont task parameters > : : = [ < task i d e n t i f i e r >] [ < task s i g n a l p r i o r i t y >]
8 <task type s p e c i f i c a t i o n > : : = type <task type >
9 <task type > : : = < v a r i a b l e i d e n t i f e r > | < l i t e r a l i d e n t i f i e r >

10 <task i d e n t i f i e r > : : = id < tid expression0 >
11 <task s i g n a l p r i o r i t y > : : = prio < Natural expression >

Listing B.1: Incorporation of task actions into SDL’s formal syntax.

Besides using task actions with plain SDL signals and timers, task actions can also be spec-
ified with real-time signaling [KBCG11], which goes beyond the built-in capabilities of acti-
vation delays in SDL-2010 [Int12d]. Extensions w.r.t. real-time signaling are, however, not in-
cluded in Listing B.1.

Depending on the concrete <task action>, i.e., whether a real-time task is created or con-
tinued, it is either possible to specify <task type specification> (when creating a new task)
or <task identifier> (when explicitly forking a task). This is, however, not prescribed by the
syntax rule but has to be checked by an additional well-formedness condition. <task type>,
<task identifier>, and <task signal priority> are built under consideration of possible
data types. A full check of data type compatibility is, however, also outside the scope of gram-
mars but requires semantical considerations.

Though it is less useful in practice, the BNF syntax allows to specify both an (ordinary) SDL
signal priority (<signal priority>) and a task signal priority (<task signal priority>) for
a single signal instance. Because (ordinary) signal priorities are only evaluated if two sig-
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nals have the same arrival time [Int12d], their impact on the transition execution order is –
in contrast to task signal priorities – very limited.

To obtain task attributes of consumed task signals from within an SDL transition, task opera-
tors are introduced in the formal syntax of SDL:

1 <imperat ive expression > : : = <now expression > | . . . . | < t i d expression > | <
t p r i o expression > | <t type expression >

2 < t i d expression > : : = taskId
3 < t p r i o expression > : : = taskPrio
4 <ttype expression > : : = taskType

Listing B.2: Incorporation of task operators into SDL’s formal syntax.

<imperative expression> is introduced in Basic SDL-2010 [Int12d] to access parts of the
system state. By adding terminals to access task attributes, information about a consumed task
signal that is known to the SVM can be obtained. Similar to SDL’s now, the taskId, taskPrio,
and taskType expressions are nullary functions, which can be used on the right-hand side of
assignments or in expressions. For instance, by accessing the identifier of an SDL real-time
task with taskId and by storing the return value in a variable of type Tid, tasks can be forked
explicitly at a later point in time. For this purpose, the new Tid data type has to be introduced
in SDL’s syntax:

1 <sort > : : = < b a s i c sor t > | <pid sor t > | < t i d sor t >
2

3 < t i d sor t > : : = <sort i d e n t i f i e r >

Listing B.3: Syntactical incorporation of Tid sort.

In most cases, <sort identifier> is Tid. However, to support syntypes of Tid, other sort
identifier words are possible for <tid sort>, too.

To suspend and resume SDL real-time tasks from within a specification, the following new
grammar rules are required in SDL’s syntax:

1 <suspend statement > : : = <suspend kind> <suspend body>
2 <suspend kind> : : = suspendTaskType | suspendTaskPrio | suspendTaskId
3 <suspend body> : : = ( <suspend parameter > )
4 <suspend parameter > : : = <task type > | < Natural expression > | < tid

expression0 >
5

6 <resume statement > : : = <resume kind> [ <resume body> ]
7 <resume kind> : : = resumeTaskType | resumeTaskPrio | resumeTaskId
8 <resume body> : : = ( <suspend parameter > )

Listing B.4: Incorporation of task suspension into SDL’s formal syntax.

In total, six new terminals are introduced to suspend and resume real-time tasks in a flexible
way. Depending on which tasks should be suspended/resumed, the functions accept a task
type, a task id, or a priority value as parameter. An exception is resumeTaskPrio that does not
take a parameter, yet the grammar would allow one.

To enable scheduling-aware system specifications, further extensions are made in the head
symbol of the system. The following listing includes all strategies that are currently supported
by the tool chain (see also Table 9.1 in Chapter 9):



205

1 <agent a d d i t i o n a l heading > : : = [ < agent formal parameters >] [ < scheduling
parameters >]

2 <scheduling parameters > : : = strategy = <scheduling s t ra tegy >;
3 <scheduling s t ra tegy > : : = default | non−optimized | s t a t i c−p r i o r i t i e s |

s ignals | tasks

Listing B.5: Support for scheduling-aware system specifications by selecting a scheduling
strategy in the head symbol.

Some of the extensions and scheduling strategies are results of the master thesis [Chr10].1

To support task scheduling and to enable comparisons with signal-based FCFS, terminals tasks
and signals have been added. Regarding transition selection order and signal transfer between
agents, non-optimized (agent-based round robin) is most compliant with SDL’s semantics. Strate-
gies default (agent-based FCFS) and static-priorities ((process) priority scheduling) are similar to
non-optimized regarding transition selection order within an SdlAgent, but transfer signals
directly between SdlAgents without scheduling Links and SdlAgentSets explicitly. The differ-
ence between default and static-priorities is not in the transition selection order of a single
SdlAgent but in the serialization of transition executions of different SdlAgents. Signal-based
FCFS also skips Links and SdlAgentSets, but additionally eliminates SDL priority inputs, since
they are hard to accommodate with a system-wide FCFS signal order. Consequently, signals
is not compliant with SDL’s semantics regarding transition selection order in single SdlAgents.
The same holds for strategy tasks, which changes transition execution orders significantly by
executing transitions in the order of task signal priorities. Hence, it does not only influence
the transition selection order between several SdlAgents but also changes the execution order
within a single SdlAgent. Thus, strategy tasks does not only affect implementation aspects, but
requires an incorporation into the formal semantics of SDL (see Appendix C).

1In the thesis [Chr10], the extensions are realized by annotations, which allow additional parameters for some
scheduling strategies (not shown in listing). For task scheduling, no additional parameters are required, since the
scheduling is controlled by task attributes only.
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SDL Real-Time Tasks – Formal Semantics
The following adaptations and extensions of SDL’s semantics have been applied to incorporate
real-time tasks formally into SDL. The extensions are based on SDL-2000 Annex F3 [Int00],
which is the latest available version of SDL’s formal ASM semantics. It should be noted that the
semantics does not directly refer to elements of the concrete syntax, which has been extended
w.r.t. SDL real-time tasks in Appendix B. Instead, it relates to the abstract syntax tree AS1. The
formal transformation from concrete syntax to AS1 has, however, been omitted, but the relation
should be intuitive and self-explanatory.

In Listing C.1, extensions regarding scheduling-aware system design are shown. Existing
parts of the semantics are colored in gray and new parts in black.

1 SCHEDULINGSTRATEGY =def {nonOptimized, defaultScheduling, signalFifoScheduling,
taskScheduling}

2

3 controlled schedStrategy: {system}→ SCHEDULINGSTRATEGY

4

5 initially
6 behaviour = rootNodeAS1.compile ∧
7 if rootNodeAS1.s-Agent−definition 6= undefined then
8 system.nodeAS1 = rootNodeAS1.s-Agent−definition ∧
9 system.owner = undefined ∧

10 system.agentMode1 = initialisation ∧
11 system.program = Agent−Set−Program
12 if rootNodeAS1.s-Schedule−definition 6= undefined then
13 system.schedStrategy = rootNodeAS1.s-Schedule−definition
14 else
15 system.schedStrategy = defaultScheduling
16 endif
17 else
18 system.program = undefined
19 endif

Listing C.1: Incorporation of scheduling-aware system specifications into SDL’s semantics.

In the listing, a new domain SCHEDULINGSTRATEGY is introduced in line 1 to distinguish
between different scheduling algorithms. The scheduling strategy, which can be selected by
the designer in the head symbol of the system, is here given as part of the abstract syntax tree
rootNodeAS1. It is evaluated in line 12 and assigned to schedStrategy, which is an attribute
of the system agent. If no strategy is selected, the corresponding part of the syntax tree is
undefined and the default strategy is assigned.
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Different from the five scheduling strategies that are available in the syntactical extensions in
Listing B.5 and supported by SdlRE, there are only four strategies in the new ASM domain. The
reason is that scheduling strategies static-priorities (Prioritiesagents) and default (FCFSagents),
which are two different strategies in SdlRE, execute the same types of agents and have the same
transition selection order within single SdlAgents. Thus, they are identical on the semantical
level of SDL, since in the formal semantics – including the extensions of this chapter –, all Sdl-
Agents run concurrently. They are subsumed by defaultScheduling here and their differentia-
tion is left to the implementation. defaultScheduling is, however, different from nonOptimized,
because it does not treat Links and SdlAgentSets as independent agents. Adaptations of the se-
mantics required by signalFifoScheduling (signal-based FCFS strategy, FCFSsignals ) are minor
and consist of “treating priority inputs like regular signal inputs”. In contrast, task scheduling
– represented by element taskScheduling in the new ASM domain SCHEDULINGSTRATEGY –,
task attributes, task operators, and task signals require additional modifications that are dis-
cussed in more detail below.

Listing C.2 shows extensions to incorporate task attributes.

1 // New domains to capture task attributes
2 shared domain TASKID

3 initially TASKID = { undefined }
4 TASKPRIORITY =def NAT ∪ { undefined }
5 TASKTYPE =def SDLLITERALS ∪ { undefined }
6

7 // New functions
8 shared taskId : SIGNALINST→ TASKID

9 controlled taskId : SDLAGENT→ TASKID

10 shared taskPriority : SIGNALINST→ TASKPRIORITY

11 controlled taskPriority : SDLAGENT→ TASKPRIORITY

12 shared taskType : TASKID→ TASKTYPE

13

14 INITAGENTCONTROLBLOCK(sa: SDLAGENT, ow:SDLAGENTSET, pa:PID, atd:
Agent−type−definition) ≡

15 sa .nodeAS1 := atd
16 . . .
17 sa.taskId := undefined
18 sa. taskPriority := undefined
19 . . .

Listing C.2: Incorporation of task attributes into SDL’s formal semantics.

Each of the task attributes is introduced by its own ASM domain. Additionally, one function
on SDLAGENT and SIGNALINST, respectively, is devised for task id and task signal priority to
store the corresponding attributes in SDL signals and in the state of an SdlAgent. Since task
type is an attribute of a real-time task and not task signal-specific, it is introduced as function
of TASKID. Domain TASKID and all functions on SIGNALINST are declared as shared, since
they can be extended and changed by the environment of the SDL system. Other domains and
functions are fully controlled by the system. During the creation of SdlAgents, the agents’ task
attributes are initialized with undefined (lines 17 and 18). They are updated when consuming
task signals, which is later described in Listings C.6 and C.7.
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Task attributes of task signals are set during the creation of the signal, which requires the
following extensions:

1 TASKACTION =def { newTask, contTask, undefined}
2

3 // Extensions of tuples to consider task action and task attributes
4 OUTPUT =def SIGNAL × VALUELABEL∗ × VALUELABEL × VIAARG × TASKACTION ×

TASKIDLABEL × TASKPRIOLABEL × TASKTYPELABEL × CONTINUELABEL

5 SET =def TIMELABEL × TIMER × VALUELABEL∗ × TASKACTION × TASKIDLABEL ×
TASKPRIOLABEL × TASKTYPELABEL × CONTINUELABEL

6

7 TASKIDLABEL =def TASKTYPELABEL =def TASKPRIOLABEL =def VALUELABEL

8

9 // Changed macros regarding extension of ordinary signals
10 EVALOUTPUT(a:OUTPUT) ≡
11 SIGNALOUTPUT(a.s-SIGNAL, values(a.s-VALUELABEL-seq, Self), value(a.s-VALUELABEL, Self), a.s-

VIAARG,a.s-TASKACTION, value(a.s-TASKIDLABEL, Self), value(a.s-TASKPRIOLABEL, Self),
value(a.s-TASKTYPELABEL, Self))

12 Self .currentLabel := a. s-CONTINUELABEL

13

14 SIGNALOUTPUT(s:SIGNAL, vSeq:VALUE∗, toArg:TOARG, viaArg:VIAARG, taskAction:TASKACTION,
taskId:TASKID, taskPriority:TASKPRIORITY, taskType:TASKTYPE) ≡

15 . . .
16 choose g: g ∈ Self .outgates ∧ Applicable(s, TOARG, VIAARG, g, undefined)
17 extend PlainSignalInst with si
18 . . .
19 if system.schedStrategy = taskScheduling then
20 CONFIGTASK(si, taskAction, taskId, taskPriority,taskType)
21 endif
22 INSERT(si, now, g)
23 endextend
24 endchoose
25

26 // Changed macros regarding timers
27 EVALSET(a:SET) ≡
28 SETTIMER(a.s-TIMER, values(a.s-VALUELABEL-seq, Self), value(a.s-TIMELABEL,Self), a.s-

TASKACTION, value(a.s-TASKIDLABEL, Self), value(a.s-TASKPRIOLABEL, Self), value(a.s-
TASKTYPELABEL, Self))

29 Self .currentLabel := a. s-CONTINUELABEL

30

31 SETTIMER(tm:TIMER, vSeq :VALUE∗, t:TIMER, taskAction:TASKACTION, taskId:TASKID, taskPriority:
TASKPRIORITY, taskType:TASKTYPE) ≡

32 let tmi = mk−TimerInst(Self.self, tm, vSeq ) in
33 . . .
34 if system.schedStrategy = taskScheduling then
35 CONFIGTASK(tmi, taskAction, taskId, taskPriority, taskType)
36 endif
37 endlet
38

39 // New help macro to insert task attributes into signals
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40 CONFIGTASK(si:SIGNALINST, taskAction:TASKACTION, taskId:TASKID, taskPriority:TASKPRIORITY,
taskType:TASKTYPE) ≡

41 if taskAction = newTask then
42 extend TASKID with taskId
43 taskId.taskType := taskType
44 si . taskId := taskId
45 endextend
46 si . taskPriority := taskPriority
47 elseif taskAction = contTask then
48 if taskId = undefined then
49 // implicit task forking
50 si . taskId := Self . taskId
51 if taskPriority 6= undefined then
52 si . taskPriority := taskPriority
53 else
54 si . taskPriority := Self . taskPriority
55 endif
56 else
57 // explicit task forking
58 si . taskId := taskId
59 si . taskPriority := taskPriority
60 endif
61 endif

Listing C.3: Extensions of signal outputs and SDL timers to support task signals.

In line 1, a new domain is introduced containing keywords for task actions. Here, undefined
is used if no task action is given in the SDL specification, i.e., if a plain SDL signal or timer
is created. In addition, tuples of output and timer set statements are extended to cover task
actions and task attributes. Since task attributes may be given as expression (e.g., taskPrio +
variable_name), they are first introduced as VALUELABEL and derived by the value function
(lines 11 and 28). In macros SIGNALOUTPUT and SETTIMER, it is then checked whether task
scheduling is selected in the specification. If this is the case, task attributes are stored in the
signal by applying macro CONFIGTASK. If task scheduling is not used, task attributes in sig-
nals remain undefined and are, consequently, not evaluated during transition selection (see
Listing C.7 below).

In macro CONFIGTASK, domain TASKID is extended with a new element if a new task is
created. Additionally, a type is assigned to the new task (possibly undefined ) and the task
priority is copied to the signal. Note that if no signal priority is provided, undefined is assigned
in line 46, which represents the lowest possible priority. If an existing task is continued, it
is distinguished between implicit and explicit task forking. With implicit task forking, the
currently executed task is continued (lines 49 to 55). If no priority is provided, the priority of
the signal is set to the priority that is stored in the state of the SdlAgent and corresponds to the
task signal priority of the lastly consumed signal. In case of explicit task forking (lines 57 to
59), the task with the provided id is continued. If the task should be continued with a priority
different from undefined, an explicit priority has to be provided. Since the type of a task is
fixed, it cannot be changed when forking tasks.
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Task operators can be invoked within a transition to obtain task attributes of the lastly con-
sumed signal. Their incorporation is presented in Listing C.4:

1 SYSTEMVALUE =def VALUEKIND × CONTINUELABEL

2 VALUEKIND =def { kNow, kSelf, kParent, kOffspring, kSender, kTaskId, kTaskType, kTaskPriority }
3

4 EVALSYSTEMVALUE(a: SYSTEMVALUE) ≡
5 value(Self .currentLabel, Self ) :=
6 case a. s-VALUEKIND of
7 | kNow: now.semvalue
8 . . .
9 | kSender: Self .sender.semvalue

10 | kTaskId: Self . taskId
11 | kTaskType: Self.taskId.taskType
12 | kTaskPriority: Self . taskPriority
13 otherwise undefined
14 endcase
15 Self .currentLabel := a. s-CONTINUELABEL

Listing C.4: Incorporation of task operators into SDL’s formal semantics.

In the listing, domain VALUEKIND is extended with a new element for each task operator.
They are used as argument of macro EVALSYSTEMVALUE to obtain the corresponding task
attribute, which is stored in the state of the SdlAgent when consuming a task signal. The transfer
of task attributes from signals to the state of an agent is part of Listing C.7.

To realize suspension and resumption of real-time tasks, several extensions regarding tran-
sition selection and the storage of information about suspended tasks become necessary. To
begin with, Listing C.5 shows the interface to access and modify the lists of suspended tasks.
Ignoring suspended tasks during transition selection is covered in Listing C.6.

1 // New system-wide functions to store suspended task ids, types, or priority.
2 // Note that functions return by default "undefined" if no value is set.
3 shared suspended: TASKID→ BOOLEAN

4 shared suspended: TASKTYPE→ BOOLEAN

5 shared taskPrioThreshold:→ TASKPRIORITY

6

7 // New actions for suspension and resumption
8 ACTION =def VAR ∪ . . . ∪ LEAVESTATENODE ∪ SUSPEND ∪ RESUME

9

10 SUSPEND =def TASKIDLABEL × TASKTYPELABEL × TASKPRIOLABEL × CONTINUELABEL

11 RESUME =def TASKIDLABEL × TASKTYPELABEL × CONTINUELABEL

12

13 // Consider new actions
14 EVAL(a: ACTION) ≡
15 if a ∈ VAR then EVALVAR(a)
16 . . .
17 elseif a ∈ LEAVESTATENODE then EVALLEAVESTATENODE(a)
18 elseif a ∈ SUSPEND then EVALSUSPEND(a)
19 elseif a ∈ RESUME then EVALRESUME(a)
20 endif
21
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22 // Suspend task id, type, or priority depending on invoked function
23 EVALSUSPEND(a: SUSPEND) ≡
24 SUSPENDTASK(value(a.s-TASKIDLABEL, Self), value(a.s-TASKTYPELABEL, Self), value(a.s-

TASKPRIOLABEL, Self))
25 Self .currentLabel := a. s-CONTINUELABEL

26

27 SUSPENDTASK(tid:TASKID, ttype:TASKTYPE, tprio:TASKPRIORITY) ≡
28 if tid 6= undefined then
29 // suspendTaskId is invoked
30 tid .suspended := True
31 elseif ttype 6= undefined
32 // suspendTaskType is invoked
33 ttype.suspended := True
34 else
35 // suspendTaskPrio is invoked
36 taskPrioThreshold := tprio
37 endif
38

39 // Resume task based on its id, type, or priority
40 EVALRESUME(a: RESUME) ≡
41 RESUMETASK(value(a.s-TASKIDLABEL, Self), value(a.s-TASKTYPELABEL, Self))
42 Self .currentLabel := a. s-CONTINUELABEL

43

44 RESUMETASK(tid:TASKID, ttype:TASKTYPE) ≡
45 if tid 6= undefined then
46 // resumeTaskId is invoked
47 tid .suspended := False
48 elseif ttype 6= undefined
49 // resumeTaskType is invoked
50 ttype.suspended := False
51 else
52 // resumeTaskPrio is invoked
53 taskPrioThreshold := undefined
54 endif

Listing C.5: Introducing further actions for task suspension and resumption.

In total, three new functions are introduced in lines 3 to 5 to store suspended tasks ids, task
types, and task signal priorities. These functions are shared, because they are observed and
modified by all ASM agents. They are accessed via two new actions, SUSPEND and RESUME.
Parameters of both actions include task id and task type. SUSPEND additionally has a priority
parameter to suspend task signals by their priority.

Comparing the semantical extensions in Listing C.5 with the syntactical extensions in Ap-
pendix B, six terminal function symbols in the syntax are mapped to two ASM macros in the
semantics. Depending on which function is invoked in the SDL specification, one argument
of SUSPENDTASK and RESUMETASK, respectively, is defined and other arguments are given
as undefined. Similar to the creation of task signals in Listing C.3, arguments of the macros
are provided as VALUELABEL first and evaluated with the value function (lines 24 and 41). In
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macros SUSPENDTASK and RESUMETASK, it is checked which argument is actually provided
and the corresponding suspension state of the task id, type, or priority threshold is updated.

The major impact of SDL real-time tasks is on transition selection, which has to privilege
task signals and to order them by their priority. The relationship between task signal selection
and existing selection phases of SdlAgents was already outlined in Sect. 8.3.3.5 and illustrated
in Fig. 8.10. In the figure, the selection of transitions consuming task signals is introduced as a
new activity phase (called selectTaskInput), which precedes the selection of priority inputs.
Since the activity phase startSelection, which is the entry point of the transition selection
phase, only initializes some variables of SdlAgents, selectTaskInput is the first activity phase
in steady state – i.e., after running the start transition of an SdlAgent— that actually searches for
firable transitions. To execute the new activity phase and to manage task attributes of consumed
task signals, the following extensions of the startSelection activity phase are necessary:

1 AGENTMODE =def { . . . , selectTaskInput, . . . } // New element added
2

3 // New function for task signal queue (sorted by task signal priorities)
4 controlled taskSignalsChecked: SDLAGENT→ SIGNALINST∗

5

6 SELECTTRANSITIONSTARTPHASE ≡
7 if Self .currentExceptionInst 6= undefined then
8 . . .
9 else

10 Self . inputPortChecked := Self.inport.queue
11 // Store all task signals ordered by priority in taskSignalsChecked
12 Self . taskSignalsChecked := collectCurrentTaskSignals(Self.inport.queue, empty)
13 // Reset task attributes of agent
14 Self . taskId := undefined
15 Self . taskPriority := undefined
16 // Search first for task signals, not for priority inputs
17 Self .agentMode3 := selectPriorityInput selectTaskInput
18 Self .agentMode4 := startPhase
19 endif
20

21 // Function to copy task signals from input port to temporary task signal queue
22 collectCurrentTaskSignals(inQueue: SIGNALINST∗, taskQueue: SIGNALINST∗ ): SIGNALINST∗ =def
23 if inQueue = empty then taskQueue
24 else collectCurrentTaskSignals(inQueue.tail, insertTaskSignal(inQueue.head, taskQueue))
25 endif
26

27 // Function to insert a task signal in a queue of task signals sorted by task priority
28 insertTaskSignal( si : SIGNALINST, taskQueue: SIGNALINST∗): SIGNALINST∗ =def
29 if si . taskId = undefined then taskQueue // signal is no task signal
30 elseif
31 // Insert task signal on correct position if task is not suspended
32 if ¬ isSuspended(si) then
33 if taskQueue = empty then <si> ∩ taskQueue
34 elseif si . taskPriority = undefined then
35 <taskQueue.head> ∩ insertTaskSignal(si, taskQueue.tail)
36 elseif taskQueue.head.taskPriority = undefined then <si> ∩ taskQueue
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37 elseif si . taskPriority < taskQueue.head.taskPriority then <si> ∩ taskQueue
38 else <taskQueue.head> ∩ insertTaskSignal(si, taskQueue.tail)
39 endif
40 else
41 taskQueue
42 endif
43 endif
44

45 // Function to check whether the signal’s task is suspended
46 isSuspended(si: SIGNALINST): BOOLEAN =def
47 // Check suspension by (0) is task signal? (1) id, (2) type, (3) priority
48 if si . taskId = undefined then False
49 elseif si . taskId.suspended = True then True
50 elseif si . taskId.taskType.suspended = True then True
51 elseif taskPrioThreshold 6= undefined ∧ ( si . taskPriority = undefined ∨ si . taskPriority ≥

taskPrioThreshold) then True
52 else False
53 endif

Listing C.6: Collect task signals in a separate queue before start of transition selection.

In addition to the introduction of a new agent mode, a new signal queue is introduced in
line 4 to temporarily store all task signals of the SdlAgent. This list is filled in line 12 before
start of transition selection by calling the recursive function collectCurrentTaskSignals, which
is defined in lines 22 to 25 and takes two arguments: The first argument (inQueue) contains
signals – plain SDL signals as well as task signals –, which are stored in the SdlAgent’s input
port but not yet in the temporary task signal queue. The second argument (taskQueue) is a list
of task signals, which have already been copied from the SdlAgent’s input port, and is sorted by
priority. This argument is also the result of the function, if there are no more signals in inQueue.

The function insertTaskSignal is used in collectCurrentTaskSignals to insert a signal into the
list of task signals and to sort the list by priority. The function is also recursive and takes the
signal to be added and the task signal queue as parameters. A signal is only inserted, if it is
actually a task signal (see line 29) and if the signal is not suspended by its task id, type, or
priority (see line 32). This is checked by help function isSuspended in lines 46 to 53. When
inserting a task signal into the queue (lines 33-38), it has to be considered that task signals
may not necessarily have a priority assigned. In this case, taskPriority is undefined, which is
synonymous to the lowest possible priority.

The actual selection of a transition is described in the subactivities of selectTaskInput (see
Fig. C.1). The formal definition can be found in Listing C.7. The subactivities are very similar
to the transition selection with plain SDL signals; in particular, regarding gathering SDL states
and possible transitions. Thus, some of the submacros in Listing C.7 could be transferred from
the standard [Int00]. Different from transition selection with plain SDL signals, where sponta-
neous transitions are possible at all times, spontaneous transitions are ignored during transition
selection with task signals. Instead, selectTaskInput has in total only three subactivities: A
start phase to initialize required functions, a selection phase to find possible transitions, and an
evaluation phase to examine enabling conditions.
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Figure C.1: Subactivities of selectTaskInput.

1 SELECTTRANSITION ≡
2 . . .
3 elseif Self .agentMode3 = selectTaskInput then
4 SELECTTASKINPUT

5 . . .
6

7 SELECTTASKINPUT ≡
8 if Self .agentMode4 = startPhase then
9 SELTASKINPUTSTARTPHASE

10 elseif Self .agentMode4 = selectionPhase then
11 SELTASKINPUTSELECTIONPHASE

12 elseif Self .agentMode4 = evaluationPhase then
13 SELTASKINPUTEVALUATIONPHASE

14 endif
15

16 SELTASKINPUTSTARTPHASE ≡
17 // Start searching for consumable task signals if task signal queue is not empty.
18 if Self . taskSignalsChecked 6= empty then
19 Self .signalChecked := Self.taskSignalsChecked.head
20 Self .stateNodesToBeChecked := collectCurrentSubStates({Self.topStateNode})
21 Self .stateNodeChecked := undefined
22 Self . transitionsToBeChecked := ∅
23 Self .agentMode4 := selectionPhase
24 else
25 Self .agentMode3 := selectPriorityInput
26 Self .agentMode4 := startPhase
27 endif
28

29 SELTASKINPUTSELECTIONPHASE ≡
30 if Self .stateNodeChecked = undefined then
31 NEXTSTATENODETOBECHECKED

32 elseif Self . transitionsToBeChecked 6= ∅ then
33 choose t: t ∈ Self . transitionsToBeChecked
34 Self . transitionsToBeChecked := Self.transitionsToBeChecked \ {t}
35 if t . s-LABEL 6= undefined then
36 EVALUATEENABLINGCONDITION(t)
37 else
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38 // Transition consuming task signal found
39 Self . currentSignalInst := Self .signalChecked
40 Self .sender := Self .signalChecked.signalSender
41 // Copy task attributes to sdl agent’s attributes
42 Self . taskId := Self .signalChecked.taskId
43 Self . taskPriority := Self .signalChecked.taskPriority
44 // Delete task signal from inport.
45 // No deletion from Self.taskSignalsChecked required, since
46 // this queue is rebuilt during next transition selection.
47 DELETE(Self.signalChecked, Self.inport)
48 TRANSITIONFOUND(t)
49 endif
50 endchoose
51 else
52 Self .stateNodeChecked := undefined
53 endif
54

55 where
56 // Identical to EvaluateEnablingCondition in SelInputSelectionPhase
57 // (SDL-2000 Z.100 Annex F.3)
58 EVALUATEENABLINGCONDITION(t:TRANSITION) ≡
59 Self . transitionChecked := t
60 Self .currentStateId := Self .stateNodeChecked.parentStateNode.stateId
61 Self .currentLabel := t . s-LABEL
62 Self .agentMode4 := evaluationPhase
63

64 NEXTSTATENODETOBECHECKED ≡
65 if Self .stateNodesToBeChecked 6= ∅ then
66 if Self .stateNodeChecked = undefined then
67 SELECTNEXTSTATENODE

68 else
69 CHECKFORINHERITEDSTATENODES

70 endif
71 else
72 // No transition found. Would be an implicit consumption for regular signals.
73 // But for task signal: Just delete from temporary task signal queue
74 // and let signal in agent’s inport.
75 DELETE(Self.signalChecked, Self.taskSignalsChecked)
76 NEXTSIGNALTOBECHECKED

77 Self .stateNodesToBeChecked := collectCurrentSubStates({Self.topStateNode})
78 Self .stateNodeChecked := undefined
79 endif
80

81 SELECTNEXTSTATENODE ≡
82 let sn = Self .stateNodesToBeChecked.selectNextStateNode in
83 if sn.stateNodeKind = procedureNode then
84 Self .stateNodesToBeChecked := Self.stateNodesToBeChecked \ collectCurrentSubStates({sn.

getPreviousStatePartition})
85 elseif sn.stateNodeKind = statePartition then
86 Self .stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn}
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87 elseif sn.stateNodeKind = stateNode then
88 Self .stateNodeChecked := sn
89 Self .stateNodesToBeChecked := Self.stateNodesToBeChecked \ {sn}
90 Self . transitionsToBeChecked := { t ∈ (sn. stateTransitions . inputTransitions ∪ sn.

stateTransitions . priorityInputTransitions) : t . s-SIGNAL = Self.signalChecked.
signalType }

91 if Self .signalChecked.signalType ∈ sn.nodeAS1.s-Save−signalset then
92 // No save required, since task signals in task signal queue are
93 // copied from inport. I.e., delete signal from task signal queue.
94 DELETE(Self.signalChecked, Self.taskSignalsChecked)
95 endif
96 endif
97 endlet
98

99 // Identical to CheckForInheritedStateNodes in SelInputSelectionPhase
100 // (SDL-2000 Z.100 Annex F.3)
101 CHECKFORINHERITEDSTATENODES ≡
102 Self .stateNodeChecked := undefined
103 let sn1 = Self .stateNodeChecked in
104 if Self .signalChecked.signalType ∈ { in.s-Signal−identifier | in ∈ sn1.nodeAS1.s-

Input−node−set } ∪ sn1.nodeAS1.s-Save−signalset then
105 Self .stateNodesToBeChecked := Self.stateNodesToBeChecked \ { sn2 ∈ Self.

stateNodesToBeChecked | InheritsFrom(sn1,sn2) }
106 endif
107 endlet
108

109 NEXTSIGNALTOBECHECKED ≡
110 // The next task signal to be checked is always the head of the task signal
111 // queue, since task signals are removed from task signal queue if no
112 // transition is found or the signal is saved.
113 if Self . taskSignalsChecked 6= empty then
114 Self .signalChecked := Self.taskSignalsChecked.head
115 else
116 Self .agentMode3 := selectPriorityInput
117 Self .agentMode4 := startPhase
118 endif
119 endwhere
120

121 SELTASKINPUTEVALUATIONPHASE ≡
122 if Self .currentLabel 6= undefined then
123 choose b: b ∈ behaviour ∧ b.s-LABEL = Self.currentLabel
124 EVAL(b.s-PRIMITIVE)
125 endchoose
126 elseif semvalue(value(Self.transitionChecked.s-LABEL,Self)) then
127 // Transition consuming task signal found
128 Self . currentSignalInst := Self .signalChecked
129 Self .sender := Self .signalChecked.signalSender
130 // Copy task attributes to sdl agent’s attributes
131 Self . taskId := Self .signalChecked.taskId
132 Self . taskPriority := Self .signalChecked.taskPriority
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133 // Delete task signal from inport
134 DELETE(Self.signalChecked, Self.inport)
135 TRANSITIONFOUND(Self.transitionChecked)
136 else
137 Self .agentMode4 := selectionPhase
138 endif

Listing C.7: Searching a consumable task signal with highest priority.

In lines 16 to 27, it is checked in the start phase if there is a task signal in the SdlAgent’s
input port, for which possible transitions have to be searched. For this purpose, the taskSig-
nalsChecked queue, which was generated in macro SELECTTRANSITIONSTARTPHASE before
(see Listing C.6), is inspected from high priority task signals to low priority task signals. Since
this queue is temporary and contains copies of signals of the agent’s input port, signals are
removed if the signal is saved in the agent’s current state (see line 94) or if there is no matching
transition (see line 75). If there is no (further) task signal, the agent continues with searching
for priority inputs (see line 25).

Compared with transition selection for plain SDL signals, which is mainly defined in macros
SELINPUTSELECTIONPHASE and SELINPUTEVALUATIONPHASE in [Int00], SELTASKINPUTSE-
LECTIONPHASE and SELTASKINPUTEVALUATIONPHASE differ as follows: First, not the agent’s
input port but the temporary task signal queue is processed (see lines 19 and 114). Second, not
only regular signal inputs but also priority inputs are considered when searching for available
transitions (see line 90), since a task signal may also be consumed by a priority input. Third,
task attributes are copied from the signal to the SdlAgent’s state when a matching transition is
found (see lines 42, 43, 131, and 132). In this case, the signal is also removed from the agent’s
input port (see lines 47 and 134).

Only minor changes are required in existing activity phases of transition selection, which
follow the activity phase selectTaskInput. By treating task signals and non-task signals in
the same way, a task signal may particularly also be consumed implicitly in the existing SE-
LECTTASKINPUT macro. To avoid implicit consumptions of suspended task signals, the ex-
isting SELINPUTSELECTIONPHASE macro (see Z.100 Annex F.3 of SDL-2000 [Int00]) has to be
extended by the invocation of isSuspended (see line 46 in Listing C.6) to check whether a signal
should really be consumed implicitly. Besides this minor extension, which is not shown in this
appendix, no further modifications of existing activity phases are required.
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