
Automatic Topology Discovery in WiFi

(IEEE 802.11) Multi-hop Ad Hoc

Networks

Kiran Mathews

May 1, 2016

1

1 Introduction

IEEE 802.11 is a set of media access control and physical layer specifications
for implementing wireless local area network communication in the 2.4, 3.6, 5,
and 60 GHz frequency bands. They are created and maintained by the IEEE
LAN/MAN Standards Committee. WiFi, wireless local area networks use these
standards to communicate between the systems.
The goal of this project is the design, implementation and extensive testing of a
protocol that automatically detects the communication topology of WiFi multi
hop ad hoc networks. The protocol is tested on Raspberry pi nodes equipped
with standard WiFi adapters. In Section 2, we describe the problem and in
Section 3, we define our protocol in detail. In Section 4, we present the results
obtained from testing the protocol on the Raspberry pi nodes. In Section 5, we
propose features that can be added into the protocol in future, and in Section
6, we conclude our work.

2 Problem Description

A wireless multi hop ad hoc network is a decentralized type of wireless net-
work which may use one or more wireless hops to convey information from a
source to a destination. The network is ad hoc because it does not rely on a
pre-existing infrastructure, such as routers in wired networks or access points
in managed wireless networks. Instead, each node participates in routing by
forwarding data to other nodes, so the determination of which nodes forward
data is made dynamically on the basis of network connectivity [4]. Thus ad hoc
networks are required to be self-organizing and self-configuring, which makes
them easy to deploy. Even applications with rather static topologies, such as
sensor/actuator networks for industrial automation, can benefit largely from the
ease of deployment these systems provide [1].
For effective operation of multi-hop ad hoc networks, communication topology
information is vital especially for routing purposes and for clustering of the
nodes. Finding proper clusters in a network helps in network scaling, hierar-
chical routing and energy management improve the reliability and performance
of the network. So the idea is to create, implement and test a protocol to de-
tect the communication topology of WiFi multi-hop ad hoc networks when the
nodes are powered on, before the actual operation starts. A similar approach
for IEEE 802.15.4 was presented in [2].
In our protocol, we assume that each node has a unique ID and nodes are sta-
tionary while the protocol runs. One of the main challenges in wireless ad hoc
networks is energy saving and it will help to find suitable energy levels for the
transmission of each node. The protocol is tested with different transmission
power to find the minimum transmission power for an existing reliable link.
Another important purpose is that it will also help to reduce the collision of the
frames. Reliability of the links will be defined based on the statistics on frame

2

delivery. Once the topology is detected and distributed, it is ensured that all
nodes have consistent topology information.
The input of the protocol is the node ID of the current node. The output of the
protocol is a matrix A, where A[i, j] = 1 iff there is a reliable communication
link from node i → j, A[i, j] = 0 iff there is no link from node i → j or A[i, j] = 2
iff the link from node i → j is unstable.
The matrix shows the communication topology of the network. In the matrix
value 1, the parameter denotes the transmission energy level for the link where
a is the highest and e is the lowest (a > b > c > d > e). In the initial phase, the
protocol is tested by setting a constant transmission power which is the highest
transmission power depending on the regulatory rules.

3 Protocol Description

This section describes the protocol. Starting by giving an overview about the
protocol’s mode of operation, this section describes the links types, how each
link is determined, and how the protocol terminates.

3.1 Overview

In this protocol, the links are detected by doing statistics on frame reception.
A node in the network is statically assigned as the master node such that the
master node will decide when the protocol should terminate. Mainly there are
two types of messages 1) Topology information messages and 2) Termination
messages. The topology information message is used to determine the link qual-
ity between the sender of the message and all receivers and also to distribute
the topology information within the network. Termination messages are used to
start the termination process and to distribute the termination details. Both of
them contain the node ID of the sender and a sequence number where the send-
ing node increases the sequence number with each message it sends, i.e. (sender
ID, Sequence No) uniquely identifies each message. Apart from the message
sequence number, each link has a sequence number which is incremented when
the link type changes. Nodes broadcast topology information messages repeat-
edly within a delay less than DELAYmax with the local matrix A until they
receive the termination message. When a node j receives topology information
messages from its neighboring node i (where i, j ∈ N | |N | = Total number
of nodes in the network), the node starts the statistics on the link. After cer-
tain processing steps, depending on the Received Signal Strength (RSS) and
lossRatio[i], j will set the link type from its neighbors i → j. lossRatio[i] is
an array at node j which stores the frame loss ratio of the link i → j. The
calculation steps used to find frame loss ratio will be explained in the following
sections.

3

3.2 Link Types and Configuration Parameters

In this section, we introduce the link types and configuration parameters of the
protocol. The protocol classifies links as either Communication link, Unstable
link or No link.

• No link (A[i, j] = 0) means that there has been no direct communication
from node i to j.

• Communication link (A[i, j] = 1) means that the node i can send frames
to node j which can be received by node j at least with signal strength
above RSSMin and the link is stable. In order to be part of the network,
the nodes in the network should have at least one communication up and
down link. A communication link from a node i→ i denotes the presence
of the node in the network.

• Unstable link (A[i, j] = 2) means that the link quality of the link from
node i to j is changing from time to time, i.e. the link is unstable.

• Processing link (A[i, j] = 3) means node j still does not have enough data
to finish statistics on the link i→ j.

For a node j, let N j
rx be the set of neighbors that can send to node j and let

N j
tx be the set of neighbors that the node j can send to. Variables RSSAvg[i],

lostFrames[i] and receivedFrames[i] are used to store the average of RSS, to
count the number of lost frames and to count the number of received frames,
respectively. To monitor message loss, the protocol uses message sequence num-
bers in the frames and timeout check. Once a link i → j is in Processing link
state, node j is expected to receive successive frames with an upper bound de-
lay of DELAYmax. contLoss[i], timeoutCheck[i] and frameSeqCheck[i] are
used to store the number of continuously lost packets for the link, the timer to
check whether the link is broken and to store the message sequence number of
the last received message, respectively. As mentioned earlier, the link types are
set depending on lossRatio and RSSAvg value for each link. Both values are
considered only if the total number of frames received is greater than Nanalysis.
lossRatio for each link is recalculated when a new frame is received or when
there occurs a time out. lossRatio value for a link i→ j is calculated as:

lossRatio[i] =
lostFrames[i]

lostFrames[i] + receivedFrames[i]
(1)

Apart from the variables for each link, the protocol has other configuration
parameters for measuring link quality. The constants Nanalysis, Tloss and Tcl

are used to set minimum number of frames (received plus lost) required for
analysis, maximum tolerable frame loss (percentage) and maximum tolerable
continuous frame loss, respectively. Apart from these, each node is expected to
join the network within a time limit of JoinT imeMAX .

4

Figure 1: Structure of the regular frame used in the protocol

3.3 Frame Structure

In this section, we discuss the structure of the frames used in the protocol.
In our implementation, the protocol runs on BiPs communication framework.
Fig (1), shows the frame structure of a regular frame used by the protocol. A
regular frame is sent along with other information like senderID, checksum ...
etc. used by the framework. The protocol uses the senderID information for
obtaining the sender ID of the topology information messages. As mentioned
earlier, the protocol uses two type of messages, topology information messages
and termination messages. Termination messages set the RTT and RTH flags
to 1. The value of Termination Hash in topology information messages is set
to 0. The total size of the regular frame is LinkPerMessage*160 bits. Next, we
explain the role of each field:

• Link Information stores the information about the links and is further
subdivided into the following fields,

– SenderID stores the source nodeID of the link,

– ReceiverID stores the destination nodeID of the link,

– Receivers Hash Value stores the hash of the local link matrix of the
SenderID used for termination (see Section 3.5).

– Link Details stores the details about the link and is further subdi-
vided into:

∗ Link Type stores the link type (0-3) (see Section 3.2),

∗ Link Strength stores the average RSS,

5

∗ Link Sequence Number stores the sequence number of the link
information, in order to identify link updates.

• Node Sequence Number stores the sequence number of the frame, in order
to monitor frame loss.

• Termination Hash stores the hash value that the master decided to termi-
nate (see Section 3.5). This field is used along with termination messages.

• RTH flag used to indicate that the sender of the frame has started hashing.
Used along with topology information messages and termination messages.

• RTT flag to indicate termination messages.

3.4 Protocol Description

In this section, we discuss the algorithm of the protocol. Algorithm (1), is
the basic outline of our topology explorer. The protocol listens to the medium
when it is not sending any frames and calls the procedure onFrameReception
when a frame is received. To avoid repeating competition with frames sent by
the neighbors, the time between two sent frames varies between DELAYmin

and DELAYmax. Nodes analyze the topology information messages from their
neighbors to calculate the quality of the links. Moreover, when a node receives a
frame from a neighbor, it parses through the frame and updates its local topol-
ogy information matrix depending on the sequence number of the link. Apart
from the sequence number for each link to check the updated information, each
frame sent by a node has a sequence number. By comparing the sequence num-
ber of a frame with the last received sequence number, frame loss on this link
can be calculated. isNetworkStable() function is used to check whether all nodes
in the network have the same topology information. It compares the hash val-
ues sent by all nodes and returns the result. The function handleTermination()
is used to handle the termination procedure and make sure that all termina-
tion criteria are satisfied (see Section 3.5). The Termination Hash is the input
to the function handleTermination(). handleTermination() functions sends the
termination message with necessary information using procedure sendFrame.
calculateHash() function is used to calculate the hash value of the topology ma-
trix.

Algorithm (2) defines the procedure to send a frame. When the timer for
sending a frame expires, it broadcasts its topology information. In the case
of the master node, it also checks whether all nodes have the same topology
information by comparing the hash values of their matrices. If all nodes have
the same topology information, it starts sending uni-cast termination messages
to its neighbors. The function hashStartCheck() is used to check whether the
node can begin hashing. Section 3.5 explains about the termination in detail.

Next, we discuss the process of determining the links in the protocol. Ini-
tially, the protocol assumes that all links are of type No link. Once a topology

6

Algorithm 1 Topology Explorer Algorithm

1: procedure Topology Explorer(NodeId, MASTER)

2: terminate ← FALSE
3: topologyMatrix [][] ← 0
4: rxMatrix[][]; . information received from neighbor
5: lastReceived[] ← 0 . last time message received
6: lastSequenceNo[] ← 0
7: receivedFrames[] ← 0
8: timeoutCheck[] ← 0
9: frameSeqCheck[] ← 0

10: contLoss[] ← 0
11: rxNeighbor[] ← 0
12: txNeighbor[] ← 0
13: RSSavg[] ← 0
14: TEXFrame f;
15: sequenceNo ← 0
16: onframeReception(processMsg(message M)); . run frame reception
17: process in background
18: while (terminate 6= TRUE) do
19: randomDelay = random(DELAYmin,DELAYmax);
20: wait(randomDelay);
21: if (isNetworkStable() == TRUE & nodeId == MASTER) then
22: terminate ← handleTermination(calculateHash())
23: else
24: sendFrame(topologyMatrix);
25: end if
26: sequenceNo ++;
27: end while
28: end procedure

7

Algorithm 2 sendFrame

1: procedure sendFrames(topologyMatrix)
2: if (nodeId ==MASTER) then
3: if (isNetworkStable()) then
4: frame.regFrame.terminationHash←calculateHash(topologyMatrix)
5: frame.regFrame.RTT ← 1
6: end if
7: else
8: if (hashStartCheck()) then
9: frame.regFrame.terminationHash←calculateHash(topologyMatrix)

10: frame.regFrame.RTT ← 0
11: frame.regFrame.RTH ← 1
12: else
13: frame.regFrame.terminationHash ← 0
14: frame.regFrame.RTT ← 0
15: frame.regFrame.RTH ← 0
16: end if
17: frame.regFrame.linkDetails ← topologyMatrix
18: frame.regFrame.messageSequenceNo ← sequenceNo
19: send(frame);
20: end if
21: end procedure

Figure 2: State graph representation of link processing of link i→ j

8

information message from node i is received by node j, the link i→ j is set to
Processing link and the node i also sets the link i → i as Communication link
to denote the presence of the node in the network. The link i → j is either
set to Communication link or Unstable link depending on the statistical result
done after Nanalysis number of frames are received (or lost).

Fig (2) represents the state graph for link processing. As mentioned earlier,
Nanalysis is the minimum number of required events to start the statistics of
a link. An event is either the reception of a frame (R) or the detection of a
frame loss (L). A link i→ j has initial state No link. If a topology information
message is received by node j, the link state moves to Processing link and it
waits in that state until Nanalysis events have occurred. Then, it calculates the
lossRatio[i] and the RSSAvg for the link. Depending on those values, link state
moves to either Communication link or Unstable link state. If it is in Unstable
link state, it remains in that state, even if the lossRatio[i] falls below Tloss. If
it is in Communication link state, it continues to recalculate the lossRatio[i]
with every event and if the recalculated lossRatio[i] is above Tloss, then the link
state changes to Unstable link state and remains there. Next, we discuss the
algorithm (3) which handles the frame reception.

Algorithm (3) defines processMsg procedure. Its main purpose is to monitor
the medium whenever the node is not sending. It uses each received message to
measure the link quality between the sender and updates the link information
if there is any new information. It also detects message loss from its neighbors
with help of timers and node sequence numbers. When a message is received,
the timer function timersSetExpiry() will update the timer for particular link
with the value DELAYmax + processing delay i.e. the timer only expires when
there is a frame loss. When a frame is received, it checks whether it is a termi-
nation message or topology information message by checking the RTT flag. If
it is a topology information message, it checks whether its a new link and if it
is a new link, the information is stored for termination process. For example,
when a new link i → j is detected, the node j adds node i into the set N j

rx.
Topology information messages are also used to measure the link quality and
also for updating local topology information about the network. If it is a termi-
nation message, it will stop sending topology information message and proceed
to termination. The function isNewlink() is used to check whether the frame is
received for the first time or not.

3.5 Protocol Termination

In this section, we discuss the challenges faced in the termination process and
solutions to solve it. As mentioned earlier, the master node decides the termi-
nation of the protocol. When the master decides to terminate, the master must
assure two things:

9

Algorithm 3 processMsg

1: procedure processMsg(Message M)
2: if (M.regFrame.RTT == TRUE) then . Check the message type
3: terminate ← handleTermination(M.regFrame.terminationHash)
4: else
5: if (isNewlink(M.senderID) == TRUE) then
6: Nrx ← M.senderID
7: end if
8: receivedFrames[M.senderID]++
9: lossTimeout[M.senderID] ← timersSetExpiry(DELAYmax +

10: currentTime() + processingDelay)
11: if (M.regFrame.messageSequenceNo 6= lastSequenceNo[M.senderID]
12: + 1) then . Checking frame loss
13: lostFrames[M.senderID]←(lostFrames[M.senderID]+

(M.regFrame.messageSequenceNo
14: - lastSequenceNo[M.senderID]))
15: contLoss[M.senderID] ← M.regFrame.messageSequenceNo -
16: lastSequenceNo[M.senderID]
17: else
18: contLoss[M.senderID] ← 0
19: end if
20: lastSequenceNo[M.senderID] ← M.regFrame.messageSequenceNo
21: for (i=0 ; < sizeof(M.regFrame.links) ; i++) do
22: for (j=0 ; j < sizeof(M.regFramelinks) ; j++) do . Update the
23: link information inside the message
24: if (M.regFrame.linkMatrix[i][j].sequenceNo >
25: TopologyMatrix[i][j].sequenceNo) then
26: TopologyMatrix[i][j].linkType ← M.regFrame.
27: linkMatrix[i][j].linkType
28: end if
29: end for
30: end for
31: totalFrames← lostFrames[M.senderID]+receivedFrames[M.senderID]

32: RSSavg[M.senderID]← M.RSS + RSSavg

totalFrame
33: if (totalFrames≥ Nanalysis) then

34: lossRatio[M.senderID] ← lostFrames[M.senderID]

totalFrames
35: if (lossRatio[M.senderID] ≥ tc ‖ (contLoss[M.senderID] ≥ Tloss

36: ‖ RSSavg[M.senderID] ≤ RSSMin) then
37: TopologyMatrix[M.senderID][nodeID].linkType ←
38: Unstable Link
39: TopologyMatrix[M.senderID][nodeID].sequenceNo ++
40: else

10

Algorithm 3 processMsg(continued)

41: if (TopologyMatrix[M.senderID][nodeID] 6=
42: Unstable Link) then
43: TopologyMatrix[M.senderID][nodeID].linkType ←
44: Communication Link
45: TopologyMatrix[M.senderID][nodeID].sequenceNo ++
46: end if
47: end if
48: end if
49: if (contLoss[M.senderID] ≥ Tcl) then
50: TopologyMatrix[M.senderID][nodeID].linkType ← Unstable Link
51: TopologyMatrix[M.senderID][nodeID].sequenceNo ++
52: end if
53: end if
54: end procedure

1. The topology is stable and

2. All nodes in the network have the same topology information.

To tackle this problem, all nodes calculate the hash value of their current topol-
ogy matrix and send this value with termination messages. Nodes only start
calculating the hash value of their local topology matrix once all the links it
analyzes are not in Processing link state i.e. for a node j, ∀i | i ∈ N j

rx, with
links i→ j are either in Unstable link or Communication link state. The master
node monitors the hash values of all nodes and once all these hash values are
the same, it starts to send the termination message. Termination messages are
uni-cast messages, i.e. each sender waits for the acknowledgment from its neigh-
bors and then terminates. This ensures that each node receives the termination
message.
Nodes that receive the termination message compare the termination hash with
their local hash value. If the node has a different hash, the node should roll back
the topology information that corresponds to the received hash. Once a node
receives a termination message, it should ensure two things before terminating:

1. a node should forward the termination message to all neighbors, i.e. for
a node i, it should forward the termination message to all links i → j,
(∀j | j ∈ N i

tx)

2. a node should receive termination message from all neighbors, i.e. for a
node j, it should receive the termination message from all links i → j,
(∀i | i ∈ N j

rx)

Apart from this, a node terminates if any of the following condition occurs:

• if any one of the node in the network cannot communicate with the node.
For a node j, the node terminates if N j

rx = ∅. In such a case, a node j sends

11

the topology information by updating the link j → j as No link which
denotes the node j is inactive. Also, it sets the links where the node j as
either a sender or receiver as No link and broadcast the information to its
neighbors. Since topology information messages are broadcast message,
there is not guarantee in the reception of the message. Thus, topology
information messages sent before the termination of a node may not be
received by any other node in the network. Since the node has terminated,
the links where a node j as the sender will change into Unstable link state
due to continuous frame loss. The master node handles such nodes by
eliminating them from the network. For this, the master node verifies
whether every node in the network had a communication up and down
link before starting the termination process.

• if it cannot communicate with any one of the node in the network, i.e. the
links from the nodes in set Ntx are unstable links (N j

tx = ∅). In such a
case, the node follows the same procedure explained in the above case. In
this situation, the probability for receiving the topology information mes-
sages with the node dead indication is less since the links to its neighbors
are unstable. But the nodes will identify about the node death due to
continuous frame loss.

• if it cannot detect the master node after a certain time limit. Currently,
it verifies the presence of master JoinT imeMAX seconds after hashing is
started. A more precise analysis of end to end delay for the exchange
of link information is needed to be calculated for finding a proper upper
bound.

4 Experiments

The protocol was evaluated by simulating different topologies. Eight WiFi
adapters were connected to an extended USB2.0 port HUB. Fig (3) shows the
topology used in the experiment. The reason for choosing this topology is be-
cause it covers most of the test cases. For example, before termination a node
should make sure that it has forwarded the termination message to its neigh-
bors (i.e. nodes in the set Ntx) and received termination message from all its
neighbors (i.e. in the set Nrx). In the selected topology, node 16 should check
whether it has received a termination message from nodes 18 and 19, and also
should forward this termination to nodes 15 and 18. Similarly, node 15 should
check whether it has a received termination messages from nodes 4, 16 and 19,
also should forward this termination to node 4,18 and 19.
For the experiment, node 6 was assigned as the master node and simulated with
different configuration parameter settings. Table (1) shows the parameter val-
ues for different settings. Configuration 1 was mainly used for less complicated
topologies. Configuration 2 was used for simulating the main topology as shown
Fig (3). The reason for choosing more relaxed configuration 2 is because the
WiFi adapters were placed so close with a few centimeters apart and chance of

12

Figure 3: Topology used for most of the experiments

collision is very high.

Parameters Configuration 1 Configuration 2

Nanalysis 15 30

Tloss 15% 30%

Tcl 5 10

JoinT imeMAX 5 sec 5 sec

Table 1: Values of the configuration parameters for each configuration

During our first test of the protocol, we saw nodes crashing after the termi-
nation has started which was due to a bug. But in real world, nodes could also
crash, e.g. due to empty battery. The nodes can crash due to different reasons
in real world scenario, but in the testing period the nodes crashed due to the
bug in our messaging system. The protocol can detect the node crash during the
run of the protocol, but the detecting node crash once the termination process
has begun was not possible in this version. For example, consider the topol-
ogy in Fig (3) and the situation where node 15 crashes during the termination
process. Node 16 sends the termination message to its neighbor nodes 15 and
18. Node 16 waits for the termination acknowledge from node 15 for a certain
time period and terminates. But that’s not the case with node 18. Node 18
expects the termination 15 and unaware of the fact that node 15 has crashed.
Since node 16 already sent node 18 a termination message, it will ignore the

13

Figure 4: A sample output

topology information messages from node 16. In such case node 18 will remain
as unterminated.
The protocol was simulated by setting the transmission power to the maximum
power allowed by the regulatory rules which is 30dBm. But the protocol was
simulated by setting the WiFi adapters to operate on different channels. The
end result depends on the traffic on each channel and depends on the environ-
ment. The run time of the protocol depends on the configuration parameter
Nanalysis and data rate allocated for each node in a network. As Nanalysis is
larger, the protocol need more frames to calculate the link quality and increases
the run time of the protocol. Parameters Tcl and Tloss can be used to adjust
to the desired link quality. Fig (4) shows a sample output of node 18 in the
simulated topology. It also shows the stats about the links in the network where
the node 18 is the receiver. The first row of the topology matrix indicates the
sender node ID and the first column indicates the receiver node ID. For example,
a total of 58 frames were received and 4 frames were lost for the link 15 → 18
and has loss ratio of 6.45%, which is below the tolerance value and results in
Communication Link.

14

5 Future Work

In this section, we discuss future work that can be done to optimize the pro-
tocol. One thing that must be done is the implementation of the solution for
detecting crashed nodes after the termination process has begun. One way to
overcome this issue is by continuously (in all phases) checking the routing to
every node. If there is a route to every node in the network, it implies that nodes
can forward and receive a termination message. It can be done by implementing
Dijkstra’s path finding algorithm [3] for repeatedly checking the route to every
node. Another possibility is to continuously monitor the links with some kind
of ping, and to notify the network with LinkError messages, if a link is broken.
If all links from a node is reported as broken, then it leads to the conclusion of
crashed node.
Another concept to be implemented is the method to transmit frames with dif-
ferent transmission power. It will help to choose the least possible transmission
power for sending frames between nodes. Apart from those important updates,
more upgrades can be introduced to optimize the protocol.
Current version assumes that when the protocol runs, the nodes are stationary
and the protocol terminates with a stable topology information of that partic-
ular time. The protocol can be extended for dynamic topology exploration, i.e
instead of terminating with a topology information, it will update the nodes
with latest topology information. For this, each node have its local topology
information, and global topology information agreed by all other nodes in the
network. The master node decides the network topology by comparing the hash
values of each node and updates the nodes with new network topology.

6 Conclusion

The main goal of this guided research was to come up with a protocol to detect
the topology of the network with nodes connected via IEEE 802.11. We came up
with a protocol, which terminates with consistent topology information among
nodes. One of the main tasks was the termination of the distributed protocol,
which was solved by introducing a master node to compare the hash values of
the topology matrix of each node. As a part of guided research, the protocol
was implemented and tested.

References

[1] Johan Åkerberg, Mikael Gidlund, and Mats Björkman. Future research
challenges in wireless sensor and actuator networks targeting industrial au-
tomation. In Industrial Informatics (INDIN), 2011 9th IEEE International
Conference on, pages 410–415. IEEE, 2011.

15

[2] Christopher Kramer, Dennis Christmann, and Reinhard Gotzhein. Auto-
matic topology discovery in TDMA-based ad hoc networks. In Wireless
Communications and Mobile Computing Conference (IWCMC), 2015 Inter-
national, pages 634–639. IEEE, 2015.

[3] S Skiena. Dijkstra’s algorithm. Implementing Discrete Mathematics: Com-
binatorics and Graph Theory with Mathematica, Reading, MA: Addison-
Wesley, pages 225–227, 1990.

[4] A Srinivas, G Vasavi, B Kavitha Laxmi, and K Rama Krishna. Interference
revelation in mobile ad-hoc networks and confrontation.

16

