New Bootloader for the Imote2 platform
Technical Report 373/09

Markus Engel, Marc Kramer
{m_engel ,kraemer}@informatik.uni-kl.de

University of Kaiserslautern, Germany

Abstract. Bootloaders are widely used to startup one or more operating systems. On embedded systems
like the Imote2, bootloaders are used to write the executable to the nonvolatile memory and, if a correct
image is found, run the executable (operating system). The hardware initialization needed to get an image
or write the image, in contrary to a PC architecture, is done by the bootloader. This report describes a
bootloader which is fail save and its codeloader is platform independently written in Java.

1 Introduction

Boot-strap-loaders (named bootloaders) are used to start an operating system (OS) on a hardware platform. In
theory it is possible to place the operating system directly at the start point and boot the operating system. On
a PC platform the master boot record (MBR), which is holds the startup code is only 512 bytes wide, and only
440 bytes are usable. The first and essential parts to boot the operating system have to fit in these 440 bytes.
On the other hand it is sometimes needed to boot an alternative OS or change some startup parameters like
the commonly known GRand Unified Bootloader [1]. On a embedded hardware (sensor nodes) like the Imote2
[2], there is no such restriction with the MBR. On PCs the OS is separated form the application and can be
exchanged independently. On sensor platforms it is common to embed the operating system in the application.
Due to this fact, the exchange of the application can’t be done by using the operating system. It has to be done
by the use of special hardware or at boot-time by the bootloader.

2 Naming conventions

In Fig. 1, you can see the principle parts to load an application to the Imote2. First you start on the PC side by
compiling the application and the operating system code with a cross compiler. A cross compiler is a compiler
which generates code for the target hardware on a different host system, the code is not runnable on the host
but on the target hardware. In our case we use a gcc for the arm [3] platform. The result is an arm-executable in
the executable and linking format (elf). After stripping the elf-file to bare assembler instructions, we call this file
the image. For the transfer (upload) of this image to the Imote2, on PC side and on Imote2 side an application
is running to perform the transfer. The application on PC, we call the Codeloader, which reads the file from
disk and controls the transfer to the Imote2. On the Imote2 the reception of the image is done at boottime by
the bootloader.

The whole transfer and the erasure of the old application is controlled by the codeloader. The bootloader
uses a simple state machine and performs the received commands. After the successful upload of the image, a
reboot is performed and the image is executed.

3 Comparision with the preinstalled Bootloader

On the Imote2, there already exists a preinstalles bootloader and a codeloader [4]. So, why is there is neeed for
a new developed boot- and codeloader and not the reuse of existing ones?
3.1 Original Code-/Bootloader

For the codeloader, the answer is the old codeloader was developed to run in cygwin [5] under MS Windows [6],
so it is not a windows program nor a linux/unix program. Our goal was a program running on Windows, Linux,

M. Engel, M. Krédmer

PC Imote
Sourcet oe
code [Vo 2 ; ~N
folar
lgcc . ;Ji\a ‘
| ¢ » L
mage N2Og,
o | 'ﬁg‘o‘ ,,,,,,,,, / ,,,,,,,,,
e \ |
~Codeloader Bootloader
¢ usB

Fig. 1: Codeloader vs. Bootloader

and if possible on Mac [7].

The bootloader has more disadvantages: It was developed for the use of tinyos, and since tinyos is using only C
and not C++, there was no need for that.

In Table 1 the memory layout of the original, preinstalled bootloader is shown. The original bootloader resides
at address of 2MiB in flash and copies the image at the location in between 0 and 2MiB — so the maximum
size is limited to 2MiB. Another fact is the double copy concept. A new image received by the bootloader
and written to a primary or a secondary flash location. The locations alternate if the last written image was
successfully transferred. After a successful transfer the image is copied to the start address 0x20. A major design
error is the size of the second image location, which is only 1 MiB large, followed by essential boot information at
0x01E00000. By successfully uploading an image larger than 1 MiB twice, you can assure to make your Imote2
unusable.

During the intensive use of the Imote2, we detected a very low programming speed of less than 20kb/s. Even
this is not a problem for small programs, it is for larger ones. Additionally the upload process sometimes stops,
having only flashed half of the image. The time waste for both were immense during development and testing
sessions.

At least, the documentation given to the original bootloader is incorrect and not up-to-date. It represents
an early development stage. Some of the effects encountered on the platform couldn’t be explained with that
documentation. The memory layout shown in Table 1 is only one example, which was detected by reverse
engineering the source code and memory content of an Imote2.

Table 1: old memory layout

3.2 New Codeloader

The goal for the new Codeloader is a platform independent base, which is executable at least running MS
Windows, Linux and if possible Mac OS X. For the application, Java[8] is platform independent and runs on all

|Memory Location |Size |Description
0x00000000 - 0x0000001F|32 Byte|Boot Vectors
0x00000020 - OxOO01FFFFF|2MiB |Programm

0x00200000 - O0xO002FFFFF|1 MiB |Bootloader
0x00300000 - 0x01BFFFFF|26 MiB |Unused

0x01C00000 - OxO01CFFFFF|1MiB |Primary bootlocation
0x01D00000 - O0xO01DFFFFF|1 MiB |[Secondary bootlocation
0x01E00000 - OxO1EFFFFF|1 MiB Adress—/Attributetable
0x01F00000 - 0x02000000{1 MiB |Unused

Bootloader for the Imote2 platform 3

these platforms. The direct hardware access to the usb interface from Java is realized using libusb [9], which is
also available for the aforementioned operating systems.

+Reset

+Upload

RN

UPLOADING

+UploadFinish

UploadFinish
rcvd

+SIG Receiption of SIG
—-SIG Send of SIG

Fig.2: communication protocol bootloader-side

Figure 2 shows the state machine protocol of the bootloader which is addressed by the codeloader. The
Bootloader starts in INIT and waits for a Reset signal of the codeloader acknowledged by a Ok and a change
to the state IDLE. The codeloader sends the address for the transfer and its size which leads to state ERASE.
After issuing Erase, the space for the data is erased and the state machine ends in state UPLOADING. Now the
codeloader transfers the whole image to the Imote2 and sends UploadFinish, which brings the Imote2 back in
state IDLE. Now a new transfer can start or the node can be reset to boot the new image. Note that codeloader
is able to write at almost any address of the Imote2, the address check is only done in the codeloader! By this
you are able to write all data on adresses > 0x00040000, which corresponds to the new memory layout as seen
in Table 2. The codeloader is available for download[10].

For a larger amount of nodes it is useful to ensure, that a specific image is programmed on only one specific
node. Our new codeloader has built-in support to check if a specific Imote2 is connected to the PC, and writes
the data only to this node. If your changing more than one node at a time, this helps you not getting confused.

One advance of implementing the codeloader in Java was the ease of porting it to a client/server architecture,
by using RMI (Remote Method Invocation). In terminal server environments, a server is running on each client,
waiting for an image to upload, while the client is started on the terminal server, providing the image. On Linux
the display variable can be used directly to connect to the client and start the upload.

3.3 New Bootloader

The implementation of the new bootloader was straight forward from the point of the communication state
machine, as described in the last section. On the platform a new, more flexible memory layout was choosen
(see Table 2). For the bootloader a size of 256 kiB is reserved (currently the bootloader needs only 100kiB).
We added 1% MiB for user configuration data. The intention of this section is to have parameters for a node
at a specific address. The configuration section can be changed while the image is kept unchanged. This helps
in deploying the same image with only different configurations. The last, and biggest section with 28 MiB is
the image location. If an image is smaller than this size, the remaining flash memory can also be used for

4 M. Engel, M. Krédmer

configuration or static data, which did not fit in the configuration section.

Note, on the Imote2 platform there are to limits on programming and erase which is NOT taken into account
by the codeloader and must be done by the programmer itself: Addresses for writing are only programmable if
the alignment is 0x40 (64). Erasing can be performed only in whole 128kiB blocks. In practice you can only
write to adresses which divide by 0x20000 (128 kiB) and the whole next 128 kiB will be erased, even if you only
write a few bytes.

Table 2: new memory layout

Memory Location [Size [Description |
0x00000000 - 0x0003FFF7|256 kiB |bootloader location (fixed)

0x0003FFF8 - 0x0003FFFB|4 Byte |Node ID, should be lower than 255 (fixed)

0x0003FFFC - 0x0003FFFF|4 Byte |serial number - used for device identification (fixed)
0x00040000 - 0x003FFFFF|1.744 MiB|node specific data (user programmable)

0x00400000 - 0x02000000({28 MiB |image location and individual data (user programmable)

For the new bootloader in contrary to the original bootloader, we changed the behavior, when a program
can be transfered to the Imote2. When the Imote2 starts up, and a USB cable is connected it waits for 3 seconds
for a new image. If the PC does not provide a new image within this time, the image on the Imote is executed.
While the image is executed, no new image is accepted until reboot.

Only one exception exists to this rule: before an image is executed it is checked, that the image is complete,
which is done by comparing a special marker value at the end of the image. If the marker is not present or
invalid, the bootloader waits until a new image is provided.

After the successful check of the marker the image is loaded and started. In our case loading means, all
static data members (section bss) are initialized. In case of C, the main program starts. In case of C++, all static
initializers have to run prior execution of the main program. The behavior is adapted by a modification of the
linker script for the Imote2, which now supports running C++ code.

Writing large code for the Imote2 raises the point of failures, which makes it necessary to have good debugging
options. For example is simple printf statement in the source code is compiled without complains but stops
execution immediately, because there is no implementation for this function. If you use the old bootloader,
it simply stops and you don’t know why. We implemented a better error handler, which shows this error by
alternate switch on and off all leds. Additionally, pressing the button causes the error handler to print a stack-
trace to standard UART port. We implemented handlers for segmentation fault (the most common bug) and
illegal instruction.

The slow upload process of the old bootloader was improved to a programming speed of more than 100kb/s.
For most images the overall programming and erasure time was reduced to less than one minute, which makes
application testing faster.

3.4 Planned Features

After the successful implementation of the basic features for the code- and bootloader, more whishes arise. We
have already shown that application development is improved by a higher programming speed. For the future
we want to improve this speed by not flashing the image to the Imote2, but simply copying the data to the
dynamic RAM and start the code right away. The gain would be a higher data transfer to the node and no
erase of the flash. On the contrary, the data is not written permanent, so any loss of power causes loss of the
image, which is acceptable for fast application development.

In future it should be easier to replace the old TinyOS bootloader by our new one. Currently, external

hardware is needed for the update via the JTAG connection. The same problem applies to an update of our
bootloader, it needs to be flashed via external hardware device.

Bootloader for the Imote2 platform 5

4 Usage

Programming a sensor platform is a very critical task. Depending on the caused error the node might be
unuseable afterwards. Anyway it is considerable bad practice not to give all possible useful information to the
user. In cases of an failure the user can determine if the problem is solvable by him. Both codeloader and
bootloader indicate each step of the process by certain outputs.

4.1 Status

An image is uploaded by the codeloader, by issuing the command java -jar codeloader.jar -file image.out.
In this case the image is named image.out. The codeloader prints Waiting for device., adding dots until an
Imote2 is attached to the USB port and started. The Imote2 shows a blue led on (Linux) or flashing (Windows)
which indicates it has received a USB configuration and is waiting for the codeloader for 3 seconds. The code-
loader confirms the detection of the Imote by printing detected.

The next state is the erase state where codeloader prints ”Erasing” and the Imote2 has all 3 (red, green, and
blue) led on. Additionally a fourth led is fading from bright to dark, which indicates the state of erasure.

The upload process is shown in more detail on the PC. It prints the percentage of the already transferred data
to the whole image size. The Imote2 indicates the upload by a flashing green led, every time a USB packet is
received and a fading external led which corresponds to the percentage on the PC. After a successful upload
the external led is switched of, the codeloader prints Reseting device, all leds on the Imote2 switched off and
the new image is executed.

If on boot the red led is active, this indicates that the bootloader cannot load the image, because it is invalid
or corrupted.

If all leds are amber on boot of the Imote2 and stay in this state, there is a serious hardware problem on the
Imote2, which is most likely a defect RAM module. Consider this Imote2 to be broken.

4.2 Command line of the codeloader

The command line for the codeloader is very simple and easy to understand. A new upload is initiated by
writing java -jar codeloader.jar -file image.out, which will upload the image image.out to the Imote2.
All command line options are shown below. For more details on the usage, refer to [10].

usage: codeloader [-connect <connect>] [-connectdisplay] [-dryrun] [-file
<file:target>] [-help] [-invalidate] [-listen] [-noreboot] [-pid
<product-id>] [-snr <serialnumber>] [-vid <vendor-id>] [-write

<write>]

-connect <connect> Connect to a daemon specified by its network
address

-connectdisplay Connect to a daemon specified by the DISPLAY
environment variable

-dryrun Reads and Writes Config File(s) and exits then

-file <file:target> Adds a file to upload with its optional target
address

-help print this help message

-invalidate Invalidate default image Location

-listen Run in Listening mode

-noreboot Does not reboot the device afterwards

-pid <product-id> Product ID of the Imote. Defaults to 0x1337

-snr <serialnumber> Serial Number of the Imote. Type ’*’ for any.

-vid <vendor-id> Vendor ID of the Imote. Defaults to 0x042b

-write <write> writes a new config file

5 Memory

The Imote2 platform has a virtual memory of 4 GByte. This virtual memory is divided into several regions
which represent either memory, or hardware functions, or left unused. The memory management unit (MMU)

6 M. Engel, M. Krédmer

can be used to map regions to others. On PC platforms this feature helps the loader to remap the base address
of the program.

x4M
x100M
unconnected
x100M XA2M
unconnected AOM SDRAM .
X X2.
XAZM SDRAM unconnected
XAOM x5C.1M X2.4M
unconnected o SRAM
X
XSC.IM SRAM x2M Registers
X5CM x40M «2.04M
Registers oM CF Card .
X
X40M CF Card unconnected x2M
X20M U x4.1M

B Cache
unconnected K
; x400k X4M

x4.1M unconnected [
x2M g

unconnected ¢

-
. Vectors B

x2M x40k x0

x0 x0

(a) Memory layout at execution of bootloader, with- (b) Memory layout at execution of image, using MMU
out MMU

Fig. 3: Memory layout at bootloader (a) and image (b) stage.

5.1 Physical Memory Layout

In Fig. 3(a), the virtual memory of 4 GByte is shown. The first 32 MB of the memory are used for the static
program in the flash memory. The same space is left unconnected after this section. The next section is used
for cache control and resides at 64 MB. At 512 MB the virtual region for compact flash, memory or pc card is
set. At 1 GB, all registers, controlling the Imote2 are mapped. At 1,472 GB the fast SRAM with 256 kB, which
is used as RAM, stack and heap resides. And finally at 2,560 GB, 32 MB of slower SDRAM are present.

5.2 Memory layout without MMU

At execution of the bootloader, the whole memory is left without remapping. On the right side of Fig. 3(a), the
layout of the flash during this phase is shown. The bootloader has a maximum size of 256 kB and starts at 0x0
with the vectors mapping to the error handlers (e.g. interrupt handler, illegal instruction or segmentation fault).
These vectors are only used during the execution of the bootloader. Next a configuration section of 3% MB is set
and followed at 4 MB by the image. The image itself has a vector section pointing to error handlers inside the
image. The rest of the image is just the code generated by the compiler and linker. Since the Imote2 platform
searches for the vectors at 0x0, one possibility is to have the vectors of the bootloader make the remapping for
the image. There are good reasons not to do so: first the bootloader is not active anymore, second, the image
should act (and be as fast), as if there has never been a bootloader, so why having it handle the interrupts or
faults?

5.3 Memory layout using MMU

Figure 3(b) shows the memory layout used, when executing the image. As in Fig. 3(a), the image still resides at
4 MB, additionally the vectors of the image are mapped to 0x0, so the bootloader and its vectors are invisible
at this place. Since the MMU has a granularity of 1 MB, parts of the configuration section is invisible, so we
decided to have the whole segment of 4-8 MB mapped to itself, and to 0x0. Since the memory region after 32 MB
is unused, we decided to map the real flash contents to this region, so the image can access its configuration, by
accessing the the memory location plus 32 MB.

Bootloader for the Imote2 platform 7

XA2M
x100M
unconnected [§g XA0.4M
XxA2M i
SDRAM ‘
XAOM) XAOM
unconnected
X5C.1M x4m
SRAM
x5CM
Registers X2.4M
x40M
CF Card
x20M
unconnected x2.04M
x4.1M
Cache X2M
xX4M
unconnected RS
x2M
x0
x400k
x0

Fig.4: Memory layout at execution of image in SDRAM

5.4 Memory while executing the image from SDRAM

In Fig. 4, the memory layout for images executed directly from SDRAM is shown. Our goal was to have images
directly execute from SDRAM without writing it to the flash memory. Without using the MMU, a new linker
script and some changes in the object files have to be made. But by the use of the MMU, there is no need to
do so, only the bootloader and the codeloader need to know this and change the MMU accordingly. The image
resides in SDRAM at address 0xA0000000 with its vectors. To keep this compatible, as mentioned, the region
of the next 4 MB is mapped to 0x0, which hold the vectors of the image. The full image is then mapped to
the region of the flash memory, which is now hidden. And for all images using the configurations, the real flash
memory is mapped to the region above 32 MB. This memory layout is easy to use, and no changes have to
be made during compilation. Only the upload parameter determines, whether the image is written to flash, or
directly executed in RAM.

6 Conclusion

In this report we presented you a new bootloader for the Imote2 platform, which avoids the known problems
of the original bootloader. In practice it has already shown its robustness and flexibility. In application devel-
opment the support for C++ and the support for error backtracking are the outstanding features of this new
bootloader. In daily use features of the codeloader, e.g. listen and connect which adds support for terminal
server environments and snr, which programs only the specified device become more and more helpful.

The communication protocol for the Imote2 was designed platform independent and simple, which makes it
easy to adapt new functions to the codeloader without changing the bootloader. Even if no implementation is
available for over-the-air-programming, the current protocol is designed to support this feature as well.

References

[1] Free Software Foundation, Inc.: Grand Unified Bootloader. http://www.gnu.org/software/grub/ (2010)

[2] Memsic: Imote 2 datasheet. http://www.memsic.com/support/documentation/wireless-sensor-networks/
category/7-datasheets.html?download=134%3Aimote2 (2010)

[3] ARM Ltd.: ARM Architecture. http://www.arm.com/ (2010)

[4]
[5]
[6]
[7]
8]
[9]
(10]

M. Engel, M. Krédmer

Shahabdeen, J.A.: Boot Loader Architecture. Technical report, University of California (2005)

Red Hat, Inc.: cygwin homepage. http://cygwin.com/ (2010)

Microsoft: Microsoft Windows. http://www.microsoft.com/Windows/ (2010)

Apple Inc.: Mac OS X. http://www.apple.com/macosx/ (2010)

Oracle Corporation: Java. http://java.sun.com (2010)

N.N.: libusb. http://sourceforge.net/projects/libusb/develop (2010)

Kramer, M., Engel, M.: Bootloader for Imote2. http://vs.cs.uni-k1l.de/activities/boot/ (2010)

