Delayed Copy |
INTENTION |
This pattern is applicable if one phenomenon, represented by the term t2 is a time displaced modification of another phenomenon, represented by the
term t1, with a maximal time delay
and w.r.t. a modifying
function, represented by f. |
SIGNATURE |
,
,
,
 |
FORMAL |
 |
NATURAL LANGUAGE |
For each time point, excluding the first
time units, the value of
t2 is the result of the application of the function represented by f to a value that t1 has had in the last
time units. |
Examples |
EXAMPLE 1 |
|
FORMAL |
 |
|
NATURAL
LANGUAGE |
For each time point, excluding the first
time
units, the measured value is the result of the application of the function
represented by
to a value that the phenomenon in
the real world has had in the last
time
units. |
Theorem Part |
THEOREM SIGNATURE |
,
,
 |
THEOREM 1 Transitivity |
|
FORMAL |
 |
|
EXPLANATION |
This theorem expresses the transitivity of this pattern. |